ﻻ يوجد ملخص باللغة العربية
Topological insulators (TI) are bulk insulators that possess robust chiral conducting states along their interfaces with normal insulators. A tremendous research effort has recently been devoted to TI-based heterostructures, in which conventional proximity effects give rise to many exotic physical phenomena. Here we establish the potential existence of topological proximity effects at the interface of a topological graphene nanoribbon (GNR) and a normal GNR. Specifically, we show that the location of the topological edge states exhibits versatile tunability as a function of the interface orientation, as well as the strengths of the interface coupling and spin-orbit coupling in the normal GNR. For zigzag and bearded GNRs, the topological edge state can be tuned to be either at the interface or outer edge of the normal ribbon. For armchair GNR, the potential location of the topological edge state can be further enriched to be at the edge of or within the normal ribbon, at the interface, or diving into the topological GNR. We also discuss potential experimental realization of the predicted topological proximity effects, which may pave the way for integrating the salient functionality of TI and graphene in future device applications.
Enhancing the spin-orbit interaction in graphene, via proximity effects with topological insulators, could create a novel 2D system that combines nontrivial spin textures with high electron mobility. In order to engineer practical spintronics applica
Finite graphene nanoribbon (GNR) heterostructures host intriguing topological in-gap states (Rizzo, D. J. et al.~textit{Nature} textbf{2018}, textit{560}, 204]). These states may be localized either at the bulk edges, or at the ends of the structure.
We reveal a proximity effect between a topological band (Chern) insulator described by a Haldane model and spin-polarized Dirac particles of a graphene layer. Coupling weakly the two systems through a tunneling term in the bulk, the topological Chern
Encapsulating graphene in hexagonal Boron Nitride has several advantages: the highest mobilities reported to date are achieved in this way, and precise nanostructuring of graphene becomes feasible through the protective hBN layers. Nevertheless, subt
The emergence of topological order in graphene is in great demand for the realization of quantum spin Hall states. Recently, it is theoretically proposed that the spin textures of surface states in topological insulator can be directly transferred to