ﻻ يوجد ملخص باللغة العربية
We study a variational model for a diblock-copolymer/homopolymer blend. The energy functional is a sharp-interface limit of a generalisation of the Ohta-Kawasaki energy. In one dimension, on the real line and on the torus, we prove existence of minimisers of this functional and we describe in complete detail the structure and energy of stationary points. Furthermore we characterise the conditions under which the minimisers may be non-unique. In higher dimensions we construct lower and upper bounds on the energy of minimisers, and explicitly compute the energy of spherically symmetric configurations.
We study the stability of layered structures in a variational model for diblock copolymer-homopolymer blends. The main step consists of calculating the first and second derivative of a sharp-interface Ohta-Kawasaki energy for straight mono- and bilay
One manifestation of quantum resonances is a large sojourn time, or autocorrelation, for states which are initially localized. We elaborate on Lavines time-energy uncertainty principle and give an estimate on the sojourn time. For the case of perturb
Utilizing frameworks developed by Delsarte, Yudin and Levenshtein, we deduce linear programming lower bounds (as $Nto infty$) for the Riesz energy of $N$-point configurations on the $d$-dimensional unit sphere in the so-called hypersingular case; i.e
We develop the Riemann-Hilbert problem approach to inverse scattering for the two-dimensional Schrodinger equation at fixed energy. We obtain global or gener
The long-time asymptotics is analyzed for all finite energy solutions to a model $mathbf{U}(1)$-invariant nonlinear Dirac equation in one dimension, coupled to a nonlinear oscillator: {it each finite energy solution} converges as $ttopminfty$ to the