ترغب بنشر مسار تعليمي؟ اضغط هنا

CeRuPO: A rare example of a Ferromagnetic Kondo lattice

118   0   0.0 ( 0 )
 نشر من قبل Cornelius Krellner
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have determined the physical ground state properties of the compounds CeRuPO and CeOsPO by means of magnetic susceptibility chi(T), specific heat C(T), electrical resistivity rho(T), and thermopower S(T) measurements. chi(T) reveals a trivalent 4f1 cerium state in both compounds. For CeRuPO a pronounced decrease of rho(T) below 50K indicates the onset of coherent Kondo scattering which is confirmed by enhanced S(T). The temperature and magnetic field dependence of chi(T) and C(T) evidence ferromagnetic (FM) order at TC=15K. Thus, CeRuPO seems to be one of the rare example of a FM Kondo lattice. In contrast, CeOsPO shows antiferromagnetic order at TN=4.4K despite only minor changes in lattice parameters and electronic configuration. Additional 31P NMR results support these scenarios. LSDA+U calculations evidence a quasi two dimensional electronic band structure, reflecting a strong covalent bonding within the CeO and RuP layers and a weak ionic like bonding between the layers.



قيم البحث

اقرأ أيضاً

We report the temperature-pressure-magnetic field phase diagram made from electrical resistivity measurements for the ferromagnetic (FM) Kondo lattice CeRuPO. The ground state at zero field changes from the FM state to another state, which is suggest ed to be an antiferromagnetic (AFM) state, above ~0.7 GPa, and the magnetically ordered state is completely suppressed at ~2.8 GPa. In addition to the collapse of the AFM state under pressure and a magnetic field, a metamagnetic (MM) transition from a paramagnetic state to a polarized paramagnetic state appears. CeRuPO will give us a rich playground for understanding the mechanism of the MM transition under comparable FM and AFM correlations in the Kondo lattice.
By studying the dielectric properties of the geometrically frustrated spinel CdV2O4, we observe ferroelectricity developing at the transition into the collinear antiferromagnetic ground state. In this multiferroic spinel, ferroelectricity is driven b y local magnetostriction and not by the more common scenario of spiral magnetism. The experimental findings are corroborated by ab-initio calculations of the electric polarization and the underlying spin and orbital order. The results point towards a charge rearrangement due to dimerization, where electronic correlations and the proximity to the insulator-metal transition play an important role.
Motivated by recent experiments, we study a quasi-one dimensional model of a Kondo lattice with Ferromagnetic coupling between the spins. Using bosonization and dynamical large-N techniques we establish the presence of a Fermi liquid and a magnetic p hase separated by a local quantum critical point, governed by the Kondo breakdown picture. Thermodynamic properties are studied and a gapless charged mode at the quantum critical point is highlighted.
In this study we report the results of study of novel ternary $Np_2PtGa_3$ compound. The x-ray-powder diffraction analysis reveals that the compound crystallizes in the orthorhombic CeCu$_2$-type crystal structure (space group Imma) with lattice para meters $a$ = 0.4409(2) nm, $b$ = 0.7077(3) nm and $c$ = 0.7683(3) nm at room temperature. The measurements of dc magnetization, specific heat and electron transport properties in the temperature range 1.7 - 300 K and in magnetic fields up to 9 T imply that this intermetallic compound belongs to a class of ferromagnetic Kondo systems. The Curie temperature of $T_C sim$ 26 K is determined from the magnetization and specific heat data. An enhanced coefficient of the electronic specific heat of $gamma$ = 180 mJ/(mol at. Np K$^2$) and -lnT dependence of the electrical resistivity indicate the presence of Kondo effect, which can be described in terms of the S = 1 underscreened Kondo-lattice model. The estimated Kondo temperature $T_K sim$ 24 K, Hall mobility of $sim$ 16.8 cm$^2$/Vs and effective mass of $sim$ 83 $m_e$ are consistent with assumption that the heavy-fermion state develops in $Np_2PtGa_3$ at low temperatures. We compare the observed properties of $Np_2PtGa_3$ to that found in $Np_2PtGa_3$ and discuss their difference in regard to change in the exchange interaction between the conduction and localized 5f electrons. We have used the Fermi wave vector $k_F$ to evaluate the Rudermann-Kittel-Kasuya-Yosida (RKKY) exchange. Based on experimental data of the (U, Np)$_2$(Pd, Pt)Ga$_3$ compounds we suggest that the evolution of the magnetic ground states in these actinide compounds can be explained within the RKKY formalism.
We report on the electrical resistivity, magnetic susceptibility and heat-capacity measurements on a new intermetallic compound CePd5Al2, crystallizing in the ZrNi2Al5-type tetragonal structure, with lattice parameters a = 4.156 A and c = 14.883 A. T he compound presents Kondo lattice behavior and an easy-plane antiferromagnetic ground state with two magnetic transitions at 2.9 K and 3.9 K. The Sommerfeld coefficient is estimated as 60 mJ/mol K^2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا