ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling the Field Emission Current Fluctuation in Carbon Nanotube Thin Films

122   0   0.0 ( 0 )
 نشر من قبل Roderick Melnik
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Owing to their distinct properties, carbon nanotubes (CNTs) have emerged as promising candidate for field emission devices. It has been found experimentally that the results related to the field emission performance show variability. The design of an efficient field emitting device requires the analysis of the variabilities with a systematic and multiphysics based modeling approach. In this paper, we develop a model of randomly oriented CNTs in a thin film by coupling the field emission phenomena, the electron-phonon transport and the mechanics of single isolated CNT. A computational scheme is developed by which the states of CNTs are updated in time incremental manner. The device current is calculated by using Fowler-Nordheim equation for field emission to study the performance at the device scale.



قيم البحث

اقرأ أيضاً

In this paper, we model the evolution and self-assembly of randomly oriented carbon nanotubes (CNTs), grown on a metallic substrate in the form of a thin film for field emission under diode configuration. Despite high output, the current in such a th in film device often decays drastically. The present paper is focused on understanding this problem. A systematic, multiphysics based modelling approach is proposed. First, a nucleation coupled model for degradation of the CNT thin film is derived, where the CNTs are assumed to decay by fragmentation and formation of clusters. The random orientation of the CNTs and the electromechanical interaction are then modeled to explain the self-assembly. The degraded state of the CNTs and the electromechanical force are employed to update the orientation of the CNTs. Field emission current at the device scale is finally obtained by using the Fowler-Nordheim equation and integration over the computational cell surfaces on the anode side. The simulated results are in close agreement with the experimental results. Based on the developed model, numerical simulations aimed at understanding the effects of various geometric parameters and their statistical features on the device current history are reported.
We report the radio-frequency performance of carbon nanotube array transistors that have been realized through the aligned assembly of highly separated, semiconducting carbon nanotubes on a fully scalable device platform. At a gate length of 100 nm, we observe output current saturation and obtain as-measured, extrinsic current gain and power gain cut-off frequencies, respectively, of 7 GHz and 15 GHz. While the extrinsic current gain is comparable to the state-of-the-art the extrinsic power gain is improved. The de-embedded, intrinsic current gain and power gain cut-off frequencies of 153 GHz and 30 GHz are the highest values experimentally achieved to date. We analyze the consistency of DC and AC performance parameters and discuss the requirements for future applications of carbon nanotube array transistors in high-frequency electronics.
We report on the observation of metallic behavior in thin films of oxygen-deficient SrTiO$_3$ - down to 9 unit cells - when coherently strained on (001) SrTiO$_3$ or DyScO$_3$-buffered (001) SrTiO$_3$ substrates. These films have carrier concentratio ns of up to 2$times10^{22}$ cm$^{-3}$ and mobilities of up to 19,000 cm$^2$/V-s at 2 K. There exists a non-conducting layer in our SrTiO$_{3-delta}$ films that is larger in films with lower carrier concentrations. This non-conducting layer can be attributed to a surface depletion layer due to a Fermi level pinning potential. The depletion width, transport, and structural properties are not greatly affected by the insertion of a DyScO$_3$ buffer between the SrTiO$_3$ film and SrTiO$_3$ substrate.
A theoretical study of the current-driven dynamics of magnetic skyrmions in disordered perpendicularly-magnetized ultrathin films is presented. The disorder is simulated as a granular structure in which the local anisotropy varies randomly from grain to grain. The skyrmion velocity is computed for different disorder parameters and ensembles. Similar behavior is seen for spin-torques due to in-plane currents and the spin Hall effect, where a pinning regime can be identified at low currents with a transition towards the disorder-free case at higher currents, similar to domain wall motion in disordered films. Moreover, a current-dependent skyrmion Hall effect and fluctuations in the core radius are found, which result from the interaction with the pinning potential.
Vanadium dioxide (VO2) has been widely studied for its rich physics and potential applications, undergoing a prominent insulator-metal transition (IMT) near room temperature. The transition mechanism remains highly debated, and little is known about the IMT at nanoscale dimensions. To shed light on this problem, here we use ~1 nm wide carbon nanotube (CNT) heaters to trigger the IMT in VO2. Single metallic CNTs switch the adjacent VO2 at less than half the voltage and power required by control devices without a CNT, with switching power as low as ~85 ${mu}W$ at 300 nm device lengths. We also obtain potential and temperature maps of devices during operation using Kelvin Probe Microscopy (KPM) and Scanning Thermal Microscopy (SThM). Comparing these with three-dimensional electrothermal simulations, we find that the local heating of the VO2 by the CNT play a key role in the IMT. These results demonstrate the ability to trigger IMT in VO2 using nanoscale heaters, and highlight the significance of thermal engineering to improve device behaviour.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا