ترغب بنشر مسار تعليمي؟ اضغط هنا

Terrestrial and Habitable Planet Formation in Binary and Multi-star Systems

76   0   0.0 ( 0 )
 نشر من قبل Nader Haghighipour
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the most surprising discoveries of extrasolar planets is the detection of planets in moderately close binary star systems. The Jovian-type planets in the two binaries of Gamma Cephei and GJ 86 have brought to the forefront questions on the formation of giant planets and the possibility of the existence of smaller bodies in such dynamically complex environments. The diverse dynamical characteristics of these objects have made scientists wonder to what extent the current theories of planet formation can be applied to binaries and multiple star systems. At present, the sensitivity of the detection techniques does not allow routine discovery of Earth-sized bodies in binary systems. However, with the advancement of new techniques, and with the recent launch of CoRoT and the launch of Kepler in late 2008, the detection of more planets (possibly terrestrial-class objects) in such systems is on the horizon. Theoretical studies and numerical modeling of terrestrial and habitable planet formation are, therefore, necessary to gain fundamental insights into the prospects for life in such systems and have great strategic impact on NASA science and missions.



قيم البحث

اقرأ أيضاً

The growth and composition of Earth is a direct consequence of planet formation throughout the Solar System. We discuss the known history of the Solar System, the proposed stages of growth and how the early stages of planet formation may be dominated by pebble growth processes. Pebbles are small bodies whose strong interactions with the nebula gas lead to remarkable new accretion mechanisms for the formation of planetesimals and the growth of planetary embryos. Many of the popular models for the later stages of planet formation are presented. The classical models with the giant planets on fixed orbits are not consistent with the known history of the Solar System, fail to create a high Earth/Mars mass ratio, and, in many cases, are also internally inconsistent. The successful Grand Tack model creates a small Mars, a wet Earth, a realistic asteroid belt and the mass-orbit structure of the terrestrial planets. In the Grand Tack scenario, growth curves for Earth most closely match a Weibull model. The feeding zones, which determine the compositions of Earth and Venus follow a particular pattern determined by Jupiter, while the feeding zones of Mars and Theia, the last giant impactor on Earth, appear to randomly sample the terrestrial disk. The late accreted mass samples the disk nearly evenly.
Several concepts have been brought forward to determine where terrestrial planets are likely to remain habitable in multi-stellar environments. Isophote-based habitable zones, for instance, rely on insolation geometry to predict habitability, whereas radiative habitable zones take the orbital motion of a potentially habitable planet into account. Dynamically informed habitable zones include gravitational perturbations on planetary orbits, and full scale, self consistent simulations promise detailed insights into the evolution of select terrestrial worlds. All of the above approaches agree that stellar multiplicity does not preclude habitability. Predictions on where to look for habitable worlds in such environments can differ between concepts. The aim of this article is to provide an overview of current approaches and present simple analytic estimates for the various types of habitable zones in binary star systems.
We report the first characterisation of the individual discs in the intermediate separation binary systems KK Oph and HD 144668 at millimetre wavelengths. In both systems the circum-primary and the circum-secondary discs are detected in the millimetr e continuum emission, but not in $^{13}$CO nor C$^{18}$O lines. Even though the disc structure is only marginally resolved, we find indications of large-scale asymmetries in the outer regions of the primary discs, most likely due to perturbation by the companion. The derived dust masses are firmly above debris disc level for all stars. The primaries have about three times more dust in their discs than the secondaries. In the case of HD 144668 the opacity spectral index of the primary and secondary differ by the large margin of 0.69 which may be a consequence of the secondary disc being more compact. Upper limits on the gas masses imply less than 0.1 M$_{textrm{jup}}$ in any of these discs, meaning that giant planets can no longer form in them. Considering that there have been no massive gas discs identified to date in intermediate separation binaries (i.e., binaries at a few hundred au separation), this opens space for speculation whether their binarity causes the removal of gas, with tidal interaction truncating the discs and hence shortening the accretion timescale. More systematic studies in this respect are sorely needed.
Many planets are observed in stellar binary systems, and their frequency may be comparable to that of planetary systems around single stars. Binary stellar evolution in such systems influences the dynamical evolution of the resident planets. Here we study the evolution of a single planet orbiting one star in an evolving binary system. We find that stellar evolution can trigger dynamical instabilities that drive planets into chaotic orbits. This instability leads to planet-star collisions, exchange of the planet between the binary stars (star-hoppers), and ejection of the planet from the system. The means by which planets can be recaptured is similar to the pull-down capture mechanism for irregular solar system satellites. Because planets often suffer close encounters with the primary on the asymptotic giant branch, captures during a collision with the stellar envelope are also possible. Such capture could populate the habitable zone around white dwarfs.
87 - G. Duchene 2009
In this article, I examine several observational trends regarding protoplanetary disks, debris disks and exoplanets in binary systems in an attempt to constrain the physical mechanisms of planet formation in such a context. Binaries wider than about 100 AU are indistinguishable from single stars in all aspects. Binaries in the 5-100 AU range, on the other hand, are associated with shorter-lived but (at least in some cases) equally massive disks. Furthermore, they form planetesimals and mature planetary systems at a similar rate as wider binaries and single stars, albeit with the peculiarity that they predominantly produce high-mass planets. I posit that the location of a stellar companion influences the relative importance of the core accretion and disk fragmentation planet formation processes, with the latter mechanism being predominant in binaries tighter than 100 AU.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا