ﻻ يوجد ملخص باللغة العربية
We report the first characterisation of the individual discs in the intermediate separation binary systems KK Oph and HD 144668 at millimetre wavelengths. In both systems the circum-primary and the circum-secondary discs are detected in the millimetre continuum emission, but not in $^{13}$CO nor C$^{18}$O lines. Even though the disc structure is only marginally resolved, we find indications of large-scale asymmetries in the outer regions of the primary discs, most likely due to perturbation by the companion. The derived dust masses are firmly above debris disc level for all stars. The primaries have about three times more dust in their discs than the secondaries. In the case of HD 144668 the opacity spectral index of the primary and secondary differ by the large margin of 0.69 which may be a consequence of the secondary disc being more compact. Upper limits on the gas masses imply less than 0.1 M$_{textrm{jup}}$ in any of these discs, meaning that giant planets can no longer form in them. Considering that there have been no massive gas discs identified to date in intermediate separation binaries (i.e., binaries at a few hundred au separation), this opens space for speculation whether their binarity causes the removal of gas, with tidal interaction truncating the discs and hence shortening the accretion timescale. More systematic studies in this respect are sorely needed.
In this article, I examine several observational trends regarding protoplanetary disks, debris disks and exoplanets in binary systems in an attempt to constrain the physical mechanisms of planet formation in such a context. Binaries wider than about
Binary star systems are assumed to be co-natal and coeval, thus to have identical chemical composition. In this work we aim to test the hypothesis that there is a connection between observed element abundance patterns and the formation of planets usi
Understanding the dominant brown dwarf and giant planet formation processes, and finding out whether these processes rely on completely different mechanisms or share common channels represents one of the major challenges of astronomy and remains the
We study the excitation and damping of tides in close binary systems, accounting for the leading order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct effects: three-mode nonlinear interactions and nonli
Planets orbiting post-common envelope binaries provide fundamental information on planet formation and evolution, especially for the yet nearly unexplored class of circumbinary planets. We searched for such planets in odp, an eclipsing short-period b