ترغب بنشر مسار تعليمي؟ اضغط هنا

Planet formation in intermediate-separation binary systems

234   0   0.0 ( 0 )
 نشر من قبل Thomas Haworth PhD
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first characterisation of the individual discs in the intermediate separation binary systems KK Oph and HD 144668 at millimetre wavelengths. In both systems the circum-primary and the circum-secondary discs are detected in the millimetre continuum emission, but not in $^{13}$CO nor C$^{18}$O lines. Even though the disc structure is only marginally resolved, we find indications of large-scale asymmetries in the outer regions of the primary discs, most likely due to perturbation by the companion. The derived dust masses are firmly above debris disc level for all stars. The primaries have about three times more dust in their discs than the secondaries. In the case of HD 144668 the opacity spectral index of the primary and secondary differ by the large margin of 0.69 which may be a consequence of the secondary disc being more compact. Upper limits on the gas masses imply less than 0.1 M$_{textrm{jup}}$ in any of these discs, meaning that giant planets can no longer form in them. Considering that there have been no massive gas discs identified to date in intermediate separation binaries (i.e., binaries at a few hundred au separation), this opens space for speculation whether their binarity causes the removal of gas, with tidal interaction truncating the discs and hence shortening the accretion timescale. More systematic studies in this respect are sorely needed.



قيم البحث

اقرأ أيضاً

86 - G. Duchene 2009
In this article, I examine several observational trends regarding protoplanetary disks, debris disks and exoplanets in binary systems in an attempt to constrain the physical mechanisms of planet formation in such a context. Binaries wider than about 100 AU are indistinguishable from single stars in all aspects. Binaries in the 5-100 AU range, on the other hand, are associated with shorter-lived but (at least in some cases) equally massive disks. Furthermore, they form planetesimals and mature planetary systems at a similar rate as wider binaries and single stars, albeit with the peculiarity that they predominantly produce high-mass planets. I posit that the location of a stellar companion influences the relative importance of the core accretion and disk fragmentation planet formation processes, with the latter mechanism being predominant in binaries tighter than 100 AU.
Binary star systems are assumed to be co-natal and coeval, thus to have identical chemical composition. In this work we aim to test the hypothesis that there is a connection between observed element abundance patterns and the formation of planets usi ng binary stars. Moreover, we also want to test how atomic diffusion might influence the observed abundance patterns. We conduct a strictly line-by-line differential chemical abundance analysis of 7 binary systems. Stellar atmospheric parameters and elemental abundances are obtained with extremely high precision (< 3.5%) using the high quality spectra from VLT/UVES and Keck/HIRES. We find that 4 of 7 binary systems show subtle abundance differences (0.01 - 0.03 dex) without clear correlations with the condensation temperature, including two planet-hosting pairs. The other 3 binary systems exhibit similar degree of abundance differences correlating with the condensation temperature. We do not find any clear relation between the abundance differences and the occurrence of known planets in our systems. Instead, the overall abundance offsets observed in the binary systems (4 of 7) could be due to the effects of atomic diffusion. Although giant planet formation does not necessarily imprint chemical signatures onto the host star, the differences in the observed abundance trends with condensation temperature, on the other hand, are likely associated with diverse histories of planet formation (e.g., formation location). Furthermore, we find a weak correlation between abundance differences and binary separation, which may provide a new constraint on the formation of binary systems.
Understanding the dominant brown dwarf and giant planet formation processes, and finding out whether these processes rely on completely different mechanisms or share common channels represents one of the major challenges of astronomy and remains the subject of heated debates. It is the aim of this review to summarize the latest developments in this field and to address the issue of origin by confronting different brown dwarf and giant planet formation scenarios to presently available observational constraints. As examined in the review, if objects are classified as Brown Dwarfs or Giant Planets on the basis of their formation mechanism, it has now become clear that their mass domains overlap and that there is no mass limit between these two distinct populations. Furthermore, while there is increasing observational evidence for the existence of non-deuterium burning brown dwarfs, some giant planets, characterized by a significantly metal enriched composition, might be massive enough to ignite deuterium burning in their core. Deuterium burning (or lack of) thus plays no role in either brown dwarf or giant planet formation. Consequently, we argue that the IAU definition to distinguish these two populations has no physical justification and brings scientific confusion. In contrast, brown dwarfs and giant planets might bear some imprints of their formation mechanism, notably in their mean density and in the physical properties of their atmosphere. Future direct imaging surveys will undoubtedly provide crucial information and perhaps provide some clear observational diagnostics to unambiguously distinguish these different astrophysical objects.
We study the excitation and damping of tides in close binary systems, accounting for the leading order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct effects: three-mode nonlinear interactions and nonli near excitation of modes by the time-varying gravitational potential of the companion. This paper presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism is applicable to binaries containing stars, planets, or compact objects, we focus on solar type stars with stellar or planetary companions. Our primary results include: (1) The linear tidal solution often used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited gravity waves are unstable to parametric resonance for companion masses M > 10-100 M_Earth at orbital periods P = 1-10 days. The nearly static equilibrium tide is, however, parametrically stable except for solar binaries with P < 2-5 days. (2) For companion masses larger than a few Jupiter masses, the dynamical tide causes waves to grow so rapidly that they must be treated as traveling waves rather than standing waves. (3) We find a novel form of parametric instability in which a single parent wave excites a very large number of daughter waves (N = 10^3[P / 10 days]) and drives them as a single coherent unit with growth rates that are ~N times faster than the standard three wave parametric instability. (4) Independent of the parametric instability, tides excite a wide range of stellar p-modes and g-modes by nonlinear inhomogeneous forcing; this coupling appears particularly efficient at draining energy out of the dynamical tide and may be more important than either wave breaking or parametric resonance at determining the nonlinear dissipation of the dynamical tide.
Planets orbiting post-common envelope binaries provide fundamental information on planet formation and evolution, especially for the yet nearly unexplored class of circumbinary planets. We searched for such planets in odp, an eclipsing short-period b inary, which shows long-term eclipse-time variations. Using published, reanalysed, and new mid-eclipse times of the white dwarf in DP,Leo, obtained between 1979 and 2010, we find agreement with the light-travel-time effect produced by a third body in an elliptical orbit. In particular, the measured binary period in 2009/2010 and the implied radial velocity coincide with the values predicted for the motion of the binary and the third body around the common center of mass. The orbital period, semi-major axis, and eccentricity of the third body are P_c = 28.0 +/- 2.0 yrs, a_c = 8.2 +/- 0.4 AU, and e_c = 0.39 +/- 0.13. Its mass of M_c sin(i_c) = 6.1 +/- 0.5 M_J qualifies it as a giant planet. It formed either as a first generation object in a protoplanetary disk around the original binary or as a second generation object in a disk formed in the common envelope shed by the progenitor of the white dwarf. Even a third generation origin in matter lost from the present accreting binary can not be entirely excluded. We searched for, but found no evidence for a fourth body.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا