ﻻ يوجد ملخص باللغة العربية
We have developed a completely new type of general-purpose CCD data acquisition system which enables one to drive any type of CCD using any type of clocking mode. A CCD driver system widely used before consisted of an analog multiplexer (MPX), a digital-to-analog converter (DAC), and an operational amplifier. A DAC is used to determine high and low voltage levels and the MPX selects each voltage level using a TTL clock. In this kind of driver board, it is difficult to reduce the noise caused by a short of high and low level in MPX and also to select many kinds of different voltage levels. Recent developments in semiconductor IC enable us to use a very fast sampling ($sim$ 10MHz) DAC with low cost. We thus develop the new driver system using a fast DAC in order to determine both the voltage level of the clock and the clocking timing. We use FPGA (Field Programmable Gate Array) to control the DAC. We have constructed the data acquisition system and found that the CCD functions well with our new system. The energy resolution of Mn K$alpha$ has a full-width at half-maximum of $simeq$ 150 eV and the readout noise of our system is $simeq$ 8 e$^-$.
Todays data analytics frameworks are compute-centric, with analytics execution almost entirely dependent on the pre-determined physical structure of the high-level computation. Relegating intermediate data to a second class entity in this manner hurt
Up to the present, the wave union method can achieve the best timing performance in FPGA based TDC designs. However, it should be guaranteed in such a structure that the non-thermometer code to binary code (NTH2B) encoding process should be finished
A novel calorimeter sensor for electron, photon and hadron energy measurement based on Secondary Emission(SE) to measure ionization is described, using sheet-dynodes directly as the active detection medium; the shower particles in an SE calorimeter c
The goal of this paper is to design image classification systems that, after an initial multi-task training phase, can automatically adapt to new tasks encountered at test time. We introduce a conditional neural process based approach to the multi-ta
The functions of the Low-Level Radio Frequency (LLRF) system at European Spallation Source (ESS) are implemented on different Field-Programmable Gate Array (FPGA) boards in a Micro Telecommunications Computing Architecture (MTCA) crate. Besides the a