ﻻ يوجد ملخص باللغة العربية
The functions of the Low-Level Radio Frequency (LLRF) system at European Spallation Source (ESS) are implemented on different Field-Programmable Gate Array (FPGA) boards in a Micro Telecommunications Computing Architecture (MTCA) crate. Besides the algorithm, code that provides access to the peripherals connected to the FPGA is necessary. In order to provide a common platform for the FPGA developments at ESS - the ESS FPGA Framework has been designed. The framework facilitates the integration of different algorithms on different FPGA boards. Three functions are provided by the framework: (1) Communication interfaces to peripherals, e.g. Analog-to-Digital Converters (ADCs) and on-board memory, (2) Upstream communication with the control system over Peripheral Component Interconnect Express (PCIe), and (3) Configuration of the on-board peripherals. To keep the framework easily extensible by Intellectual Property (IP) blocks and to enable seamless integration with the Xilinx design tools, the Advanced eXtensible Interface version 4 (AXI4) bus is the chosen communication interconnect. Furthermore, scripts automatize the building of the FPGA configuration, software components and the documentation. The LLRF control algorithms have been successfully integrated into the framework.
The ambitious instrument suite for the future European Spallation Source whose civil construction started recently in Lund, Sweden, demands a set of diverse and challenging requirements for the neutron detectors. For instance, the unprecedented high
The HIBEAM/NNBAR program is a proposed two-stage experiment at the European Spallation Source focusing on searches for baryon number violation via processes in which neutrons convert to antineutrons. This paper outlines the computing and detector sim
The aim of this short note is to present an option for a source of ultracold neutrons (UCNs), which could profit from the pulse time-structure of the future ESS spallation neutron source in Lund, and thus which could produce a very high UCN density a
A sensitive search for neutron-antineutron oscillations can provide a unique probe of some of the central questions in particle physics and cosmology: the energy scale and mechanism for baryon number violation, the origin of the baryon-antibaryon asy
Waveform feature is one of the requirements for the FRIB LLRF controllers. It is desired that the LLRF con-trollers store the internal data (e.g. the amplitude and phase information of forward/reverse/cavity signals) for at least one second of sample