ترغب بنشر مسار تعليمي؟ اضغط هنا

Topologically non-trivial magnon bands in artificial square spin ices subject to Dzyaloshinskii-Moriya interaction

321   0   0.0 ( 0 )
 نشر من قبل Ezio Iacocca
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Systems that exhibit topologically protected edge states are interesting both from a fundamental point of view as well as for potential applications, the latter because of the absence of back-scattering and robustness to perturbations. It is desirable to be able to control and manipulate such edge states. Here, we show that artificial square ices can incorporate both features: an interfacial Dzyaloshinksii-Moriya gives rise to topologically non-trivial magnon bands, and the equilibrium state of the spin ice is reconfigurable with different configurations having different magnon dispersions and topology. The topology is found to develop as odd-symmetry bulk and edge magnon bands approach each other, so that constructive band inversion occurs in reciprocal space. Our results show that topologically protected bands are supported in square spin ices.



قيم البحث

اقرأ أيضاً

In thin magnetic layers with structural inversion asymmetry and spin-orbit coupling, a Dzyaloshinskii-Moriya interaction arises at the interface. When a spin wave current ${bf j}_m$ flows in a system with a homogeneous magnetization {bf m}, this inte raction produces an effective field-like torque on the form ${bf T}_{rm FL}propto{bf m}times({bf z}times{bf j}_m)$ as well as a damping-like torque, ${bf T}_{rm DL}propto{bf m}times[({bf z}times{bf j}_m)times{bf m}]$ in the presence of spin-wave relaxation (${bf z}$ is normal to the interface). These torques mediated by the magnon flow can reorient the time-averaged magnetization direction and display a number of similarities with the torques arising from the electron flow in a magnetic two dimensional electron gas with Rashba spin-orbit coupling. This magnon-mediated spin-orbit torque can be efficient in the case of magnons driven by a thermal gradient.
We report current-induced domain wall motion (CIDWM) in TaCo20Fe60B20MgO nanowires. Domain walls are observed to move against the electron flow when no magnetic field is applied, while a field along the nanowires strongly affects the domain wall moti on direction and velocity. A symmetric effect is observed for up-down and down-up domain walls. This indicates the presence of right-handed domain walls, due to a Dzyaloshinskii-Moriya interaction (DMI) with a DMI coefficient D=+0.06 mJ/m2. The positive DMI coefficient is interpreted to be a consequence of boron diffusion into the tantalum buffer layer during annealing. In a PtCo68Fe22B10MgO nanowire CIDWM along the electron flow was observed, corroborating this interpretation. The experimental results are compared to 1D-model simulations including the effects of pinning. This advanced modelling allows us to reproduce the experiment outcomes and reliably extract a spin-Hall angle {theta}SH=-0.11 for Ta in the nanowires, showing the importance of an analysis that goes beyond the currently used model for perfect nanowires.
273 - Erik Ostman 2017
The modification of geometry and interactions in two-dimensional magnetic nanosystems has enabled a range of studies addressing the magnetic order, collective low-energy dynamics, and emergent magnetic properties, in e.g. artificial spin ice structur es. The common denominator of all these investigations is the use of Ising-like mesospins as building blocks, in the form of elongated magnetic islands. Here we introduce a new approach: single interaction modifiers, using slave-mesospins in the form of discs, within which the mesospin is free to rotate in the disc plane. We show that by placing these on the vertices of square artificial spin ice arrays and varying their diameter, it is possible to tailor the strength and the ratio of the interaction energies. We demonstrate the existence of degenerate ice-rule obeying states in square artificial spin ice structures, enabling the exploration of thermal dynamics in a spin liquid manifold. Furthermore, we even observe the emergence of flux lattices on larger length-scales, when the energy landscape of the vertices is reversed. The work highlights the potential of a design strategy for two-dimensional magnetic nano-architectures, through which mixed dimensionality of mesospins can be used to promote thermally emergent mesoscale magnetic states.
137 - Junyi Zhang 2014
In this article we proposed a scheme to generating steady topologically non-trivial artificial spin texture in cold atom systems. An example of generating a texture of charge one skyrmion with Laguerre-Gaussian beam was given. It provides a scheme fo r studying skyrmion excitations of quantum Hall ferromagnetism in cold atom systems.
Employing Brillouin spectroscopy, strong interfacial Dzyaloshinskii-Moriya interactions have been observed in an ultrathin Pt/CoFeB film. Our micromagnetic simulations show that spin-wave nonreciprocity due to asymmetric surface pinning is insignific ant for the 0.8nmthick CoFeB film studied. The observed high asymmetry of the monotonic spin wave dispersion relation is thus ascribed to strong Dzyaloshinskii-Moriya interactions present at the Pt/CoFeB interface. Our findings should further enhance the significance of CoFeB as an important material for magnonic, spintronic and skyrmionic applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا