ﻻ يوجد ملخص باللغة العربية
Employing Brillouin spectroscopy, strong interfacial Dzyaloshinskii-Moriya interactions have been observed in an ultrathin Pt/CoFeB film. Our micromagnetic simulations show that spin-wave nonreciprocity due to asymmetric surface pinning is insignificant for the 0.8nmthick CoFeB film studied. The observed high asymmetry of the monotonic spin wave dispersion relation is thus ascribed to strong Dzyaloshinskii-Moriya interactions present at the Pt/CoFeB interface. Our findings should further enhance the significance of CoFeB as an important material for magnonic, spintronic and skyrmionic applications.
We present results of the analysis of Brillouin Light Scattering (BLS) measurements of spin waves performed on ultrathin single and multirepeat CoFeB layers with adjacent heavy metal layers. From a detailed study of the spin-wave dispersion relation,
Interfacial Dzyaloshinskii-Moriya interaction (iDMI) in interlayer exchange coupled (IEC) Pt/Co$_{20}$Fe$_{60}$B$_{20}$(1.12 nm)/Ru/Co$_{20}$Fe$_{60}$B$_{20}$(1.12 nm) systems have been studied theoretically and experimentally. Vibrating sample magne
Results of a comprehensive study by means of Brillouin spectroscopy, complemented by Ferromagnetic Resonance characterization, of spin waves (SW) propagating in Py/Pt bi-layers, characterized by pronounced interface Dzyaloshinskii-Moriya interactions
The Dzyaloshinskii-Moriya interaction in ultrathin ferromagnets can result in nonreciprocal propagation of spin waves. We examine theoretically how spin wave power flow is influenced by this interaction. We show that the combination of the dipole-dip
The interfacial Dzyaloshinskii-Moriya interaction (iDMI) is attracting great interests for spintronics. An iDMI constant larger than 3 mJ/m^2 is expected to minimize the size of skyrmions and to optimize the DW dynamics. In this study, we experimenta