We combine classical methods of combinatorial group theory with the theory of small cancellations over relatively hyperbolic groups to construct finitely generated torsion-free groups that have only finitely many classes of conjugate elements. Moreov
er, we present several results concerning embeddings into such groups. As another application of these techniques, we prove that every countable group $C$ can be realized as a group of outer automorphisms of a group $N$, where $N$ is a finitely generated group having Kazhdans property (T) and containing exactly two conjugacy classes.
We investigate dynamical properties of bright solitons with a finite background in the F=1 spinor Bose-Einstein condensate (BEC), based on an integrable spinor model which is equivalent to the matrix nonlinear Schr{o}dinger equation with a self-focus
ing nonlineality. We apply the inverse scattering method formulated for nonvanishing boundary conditions. The resulting soliton solutions can be regarded as a generalization of those under vanishing boundary conditions. One-soliton solutions are derived in an explicit manner. According to the behaviors at the infinity, they are classified into two kinds, domain-wall (DW) type and phase-shift (PS) type. The DW-type implies the ferromagnetic state with nonzero total spin and the PS-type implies the polar state, where the total spin amounts to zero. We also discuss two-soliton collisions. In particular, the spin-mixing phenomenon is confirmed in a collision involving the DW-type. The results are consistent with those of the previous studies for bright solitons under vanishing boundary conditions and dark solitons. As a result, we establish the robustness and the usefulness of the multiple matter-wave solitons in the spinor BECs.
We define nonselfadjoint operator algebras with generators $L_{e_1},..., L_{e_n}, L_{f_1},...,L_{f_m}$ subject to the unitary commutation relations of the form [ L_{e_i}L_{f_j} = sum_{k,l} u_{i,j,k,l} L_{f_l}L_{e_k}] where $u= (u_{i,j,k,l})$ is an $n
m times nm$ unitary matrix. These algebras, which generalise the analytic Toeplitz algebras of rank 2 graphs with a single vertex, are classified up to isometric isomorphism in terms of the matrix $u$.
Recently, Bruinier and Ono classified cusp forms $f(z) := sum_{n=0}^{infty} a_f(n)q ^n in S_{lambda+1/2}(Gamma_0(N),chi)cap mathbb{Z}[[q]]$ that does not satisfy a certain distribution property for modulo odd primes $p$. In this paper, using Rankin-C
ohen Bracket, we extend this result to modular forms of half integral weight for primes $p geq 5$. As applications of our main theorem we derive distribution properties, for modulo primes $pgeq5$, of traces of singular moduli and Hurwitz class number. We also study an analogue of Newmans conjecture for overpartitions.
We review recent progress in operator algebraic approach to conformal quantum field theory. Our emphasis is on use of representation theory in classification theory. This is based on a series of joint works with R. Longo.
We present a theoretical framework for plasma turbulence in astrophysical plasmas (solar wind, interstellar medium, galaxy clusters, accretion disks). The key assumptions are that the turbulence is anisotropic with respect to the mean magnetic field
and frequencies are low compared to the ion cyclotron frequency. The energy injected at the outer scale scale has to be converted into heat, which ultimately cannot be done without collisions. A KINETIC CASCADE develops that brings the energy to collisional scales both in space and velocity. Its nature depends on the physics of plasma fluctuations. In each of the physically distinct scale ranges, the kinetic problem is systematically reduced to a more tractable set of equations. In the inertial range above the ion gyroscale, the kinetic cascade splits into a cascade of Alfvenic fluctuations, which are governed by the RMHD equations at both the collisional and collisionless scales, and a passive cascade of compressive fluctuations, which obey a linear kinetic equation along the moving field lines associated with the Alfvenic component. In the dissipation range between the ion and electron gyroscales, there are again two cascades: the kinetic-Alfven-wave (KAW) cascade governed by two fluid-like Electron RMHD equations and a passive phase-space cascade of ion entropy fluctuations. The latter cascade brings the energy of the inertial-range fluctuations that was damped by collisionless wave-particle interaction at the ion gyroscale to collisional scales in the phase space and leads to ion heating. The KAW energy is similarly damped at the electron gyroscale and converted into electron heat. Kolmogorov-style scaling relations are derived for these cascades. Astrophysical and space-physical applications are discussed in detail.
We study a simple model of a nematic liquid crystal made of parallel ellipsoidal particles interacting via a repulsive Gaussian law. After identifying the relevant solid phases of the system through a careful zero-temperature scrutiny of as many as e
leven candidate crystal structures, we determine the melting temperature for various pressure values, also with the help of exact free energy calculations. Among the prominent features of this model are pressure-driven reentrant melting and the stabilization of a columnar phase for intermediate temperatures.
Part I describes an intelligent acoustic emission locator, while Part II discusses blind source separation, time delay estimation and location of two continuous acoustic emission sources. Acoustic emission (AE) analysis is used for characterization
and location of developing defects in materials. AE sources often generate a mixture of various statistically independent signals. A difficult problem of AE analysis is separation and characterization of signal components when the signals from various sources and the mode of mixing are unknown. Recently, blind source separation (BSS) by independent component analysis (ICA) has been used to solve these problems. The purpose of this paper is to demonstrate the applicability of ICA to locate two independent simultaneously active acoustic emission sources on an aluminum band specimen. The method is promising for non-destructive testing of aircraft frame structures by acoustic emission analysis.
A fully differential calculation in perturbative quantum chromodynamics is presented for the production of massive photon pairs at hadron colliders. All next-to-leading order perturbative contributions from quark-antiquark, gluon-(anti)quark, and glu
on-gluon subprocesses are included, as well as all-orders resummation of initial-state gluon radiation valid at next-to-next-to-leading logarithmic accuracy. The region of phase space is specified in which the calculation is most reliable. Good agreement is demonstrated with data from the Fermilab Tevatron, and predictions are made for more detailed tests with CDF and DO data. Predictions are shown for distributions of diphoton pairs produced at the energy of the Large Hadron Collider (LHC). Distributions of the diphoton pairs from the decay of a Higgs boson are contrasted with those produced from QCD processes at the LHC, showing that enhanced sensitivity to the signal can be obtained with judicious selection of events.
We give a quantitative analysis of clustering in a stochastic model of one-dimensional gas. At time zero, the gas consists of $n$ identical particles that are randomly distributed on the real line and have zero initial speeds. Particles begin to move
under the forces of mutual attraction. When particles collide, they stick together forming a new particle, called cluster, whose mass and speed are defined by the laws of conservation. We are interested in the asymptotic behavior of $K_n(t)$ as $nto infty$, where $K_n(t)$ denotes the number of clusters at time $t$ in the system with $n$ initial particles. Our main result is a functional limit theorem for $K_n(t)$. Its proof is based on the discovered localization property of the aggregation process, which states that the behavior of each particle is essentially defined by the motion of neighbor particles.