ترغب بنشر مسار تعليمي؟ اضغط هنا

فلترة حسب
316 - Lester Ingber 2007
Real Options for Project Schedules (ROPS) has three recursive sampling/optimization shells. An outer Adaptive Simulated Annealing (ASA) optimization shell optimizes parameters of strategic Plans containing multiple Projects containing ordered Tasks. A middle shell samples probability distributions of durations of Tasks. An inner shell samples probability distributions of costs of Tasks. PATHTREE is used to develop options on schedules.. Algorithms used for Trading in Risk Dimensions (TRD) are applied to develop a relative risk analysis among projects.
We study a recently proposed formulation of overlap fermions at finite density. In particular we compute the energy density as a function of the chemical potential and the temperature. It is shown that overlap fermions with chemical potential reproduce the correct continuum behavior.
We give a quantitative analysis of clustering in a stochastic model of one-dimensional gas. At time zero, the gas consists of $n$ identical particles that are randomly distributed on the real line and have zero initial speeds. Particles begin to move under the forces of mutual attraction. When particles collide, they stick together forming a new particle, called cluster, whose mass and speed are defined by the laws of conservation. We are interested in the asymptotic behavior of $K_n(t)$ as $nto infty$, where $K_n(t)$ denotes the number of clusters at time $t$ in the system with $n$ initial particles. Our main result is a functional limit theorem for $K_n(t)$. Its proof is based on the discovered localization property of the aggregation process, which states that the behavior of each particle is essentially defined by the motion of neighbor particles.
400 - N.V.Tcherniega 2007
The results of the spectral, energetical and temporal characteristics of radiation in the presence of the photonic flame effect are presented. Artificial opal posed on Cu plate at the temperature of liquid nitrogen boiling point (77 K) being irradiat ed by nanosecond ruby laser pulse produces long- term luminiscence with a duration till ten seconds with a finely structured spectrum in the the antistocks part of the spectrum. Analogous visible luminescence manifesting time delay appeared in other samples of the artificial opals posed on the same plate. In the case of the opal infiltrated with different nonlinear liquids the threshold of the luminiscence is reduced and the spatial disribution of the bright emmiting area on the opal surface is being changed. In the case of the putting the frozen nonlinear liquids on the Cu plate long-term blue bright luminiscence took place in the frozen species of the liquids. Temporal characteristics of this luminiscence are nearly the same as in opal matrixes.
We discuss the results from the combined IRAC and MIPS c2d Spitzer Legacy observations of the Serpens star-forming region. In particular we present a set of criteria for isolating bona fide young stellar objects, YSOs, from the extensive background c ontamination by extra-galactic objects. We then discuss the properties of the resulting high confidence set of YSOs. We find 235 such objects in the 0.85 deg^2 field that was covered with both IRAC and MIPS. An additional set of 51 lower confidence YSOs outside this area is identified from the MIPS data combined with 2MASS photometry. We describe two sets of results, color-color diagrams to compare our observed source properties with those of theoretical models for star/disk/envelope systems and our own modeling of the subset of our objects that appear to be star+disks. These objects exhibit a very wide range of disk properties, from many that can be fit with actively accreting disks to some with both passive disks and even possibly debris disks. We find that the luminosity function of YSOs in Serpens extends down to at least a few x .001 Lsun or lower for an assumed distance of 260 pc. The lower limit may be set by our inability to distinguish YSOs from extra-galactic sources more than by the lack of YSOs at very low luminosities. A spatial clustering analysis shows that the nominally less-evolved YSOs are more highly clustered than the later stages and that the background extra-galactic population can be fit by the same two-point correlation function as seen in other extra-galactic studies. We also present a table of matches between several previous infrared and X-ray studies of the Serpens YSO population and our Spitzer data set.
We review recent progress in operator algebraic approach to conformal quantum field theory. Our emphasis is on use of representation theory in classification theory. This is based on a series of joint works with R. Longo.
This paper considers the propagation of shallow-water solitary and nonlinear periodic waves over a gradual slope with bottom friction in the framework of a variable-coefficient Korteweg-de Vries equation. We use the Whitham averaging method, using a recent development of this theory for perturbed integrable equations. This general approach enables us not only to improve known results on the adiabatic evolution of isolated solitary waves and periodic wave trains in the presence of variable topography and bottom friction, modeled by the Chezy law, but also importantly, to study the effects of these factors on the propagation of undular bores, which are essentially unsteady in the system under consideration. In particular, it is shown that the combined action of variable topography and bottom friction generally imposes certain global restrictions on the undular bore propagation so that the evolution of the leading solitary wave can be substantially different from that of an isolated solitary wave with the same initial amplitude. This non-local effect is due to nonlinear wave interactions within the undular bore and can lead to an additional solitary wave amplitude growth, which cannot be predicted in the framework of the traditional adiabatic approach to the propagation of solitary waves in slowly varying media.
511 - M.C. Nucci , P.G.L. Leach 2007
In this note we present three representations of a 248-dimensional Lie algebra, namely the algebra of Lie point symmetries admitted by a system of five trivial ordinary differential equations each of order forty-four, that admitted by a system of sev en trivial ordinary differential equations each of order twenty-eight and that admitted by one trivial ordinary differential equation of order two hundred and forty-four.
454 - I. Grabec 2007
Statistical modeling of experimental physical laws is based on the probability density function of measured variables. It is expressed by experimental data via a kernel estimator. The kernel is determined objectively by the scattering of data during calibration of experimental setup. A physical law, which relates measured variables, is optimally extracted from experimental data by the conditional average estimator. It is derived directly from the kernel estimator and corresponds to a general nonparametric regression. The proposed method is demonstrated by the modeling of a return map of noisy chaotic data. In this example, the nonparametric regression is used to predict a future value of chaotic time series from the present one. The mean predictor error is used in the definition of predictor quality, while the redundancy is expressed by the mean square distance between data points. Both statistics are used in a new definition of predictor cost function. From the minimum of the predictor cost function, a proper number of data in the model is estimated.
577 - Damian C. Swift 2007
A general formulation was developed to represent material models for applications in dynamic loading. Numerical methods were devised to calculate response to shock and ramp compression, and ramp decompression, generalizing previous solutions for scal ar equations of state. The numerical methods were found to be flexible and robust, and matched analytic results to a high accuracy. The basic ramp and shock solution methods were coupled to solve for composite deformation paths, such as shock-induced impacts, and shock interactions with a planar interface between different materials. These calculations capture much of the physics of typical material dynamics experiments, without requiring spatially-resolving simulations. Example calculations were made of loading histories in metals, illustrating the effects of plastic work on the temperatures induced in quasi-isentropic and shock-release experiments, and the effect of a phase transition.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا