ترغب بنشر مسار تعليمي؟ اضغط هنا

فلترة حسب
The shape of the hadronic form factor f+(q2) in the decay D0 --> K- e+ nue has been measured in a model independent analysis and compared with theoretical calculations. We use 75 fb(-1) of data recorded by the BABAR detector at the PEPII electron-pos itron collider. The corresponding decay branching fraction, relative to the decay D0 --> K- pi+, has also been measured to be RD = BR(D0 --> K- e+ nue)/BR(D0 --> K- pi+) = 0.927 +/- 0.007 +/- 0.012. From these results, and using the present world average value for BR(D0 --> K- pi+), the normalization of the form factor at q2=0 is determined to be f+(0)=0.727 +/- 0.007 +/- 0.005 +/- 0.007 where the uncertainties are statistical, systematic, and from external inputs, respectively.
583 - Debashish Goswami 2007
We formulate a quantum generalization of the notion of the group of Riemannian isometries for a compact Riemannian manifold, by introducing a natural notion of smooth and isometric action by a compact quantum group on a classical or noncommutative ma nifold described by spectral triples, and then proving the existence of a universal object (called the quantum isometry group) in the category of compact quantum groups acting smoothly and isometrically on a given (possibly noncommutative) manifold satisfying certain regularity assumptions. In fact, we identify the quantum isometry group with the universal object in a bigger category, namely the category of `quantum families of smooth isometries, defined along the line of Woronowicz and Soltan. We also construct a spectral triple on the Hilbert space of forms on a noncommutative manifold which is equivariant with respect to a natural unitary representation of the quantum isometry group. We give explicit description of quantum isometry groups of commutative and noncommutative tori, and in this context, obtain the quantum double torus defined in cite{hajac} as the universal quantum group of holomorphic isometries of the noncommutative torus.
We performed a rigorous theoretical convergence analysis of the discrete dipole approximation (DDA). We prove that errors in any measured quantity are bounded by a sum of a linear and quadratic term in the size of a dipole d, when the latter is in th e range of DDA applicability. Moreover, the linear term is significantly smaller for cubically than for non-cubically shaped scatterers. Therefore, for small d errors for cubically shaped particles are much smaller than for non-cubically shaped. The relative importance of the linear term decreases with increasing size, hence convergence of DDA for large enough scatterers is quadratic in the common range of d. Extensive numerical simulations were carried out for a wide range of d. Finally we discuss a number of new developments in DDA and their consequences for convergence.
532 - Y. H. Pong , C. K. Law 2007
We study the two-particle wave function of paired atoms in a Fermi gas with tunable interaction strengths controlled by Feshbach resonance. The Cooper pair wave function is examined for its bosonic characters, which is quantified by the correction of Bose enhancement factor associated with the creation and annihilation composite particle operators. An example is given for a three-dimensional uniform gas. Two definitions of Cooper pair wave function are examined. One of which is chosen to reflect the off-diagonal long range order (ODLRO). Another one corresponds to a pair projection of a BCS state. On the side with negative scattering length, we found that paired atoms described by ODLRO are more bosonic than the pair projected definition. It is also found that at $(k_F a)^{-1} ge 1$, both definitions give similar results, where more than 90% of the atoms occupy the corresponding molecular condensates.
526 - Ashot Minasyan 2007
We combine classical methods of combinatorial group theory with the theory of small cancellations over relatively hyperbolic groups to construct finitely generated torsion-free groups that have only finitely many classes of conjugate elements. Moreov er, we present several results concerning embeddings into such groups. As another application of these techniques, we prove that every countable group $C$ can be realized as a group of outer automorphisms of a group $N$, where $N$ is a finitely generated group having Kazhdans property (T) and containing exactly two conjugacy classes.
577 - Damian C. Swift 2007
A general formulation was developed to represent material models for applications in dynamic loading. Numerical methods were devised to calculate response to shock and ramp compression, and ramp decompression, generalizing previous solutions for scal ar equations of state. The numerical methods were found to be flexible and robust, and matched analytic results to a high accuracy. The basic ramp and shock solution methods were coupled to solve for composite deformation paths, such as shock-induced impacts, and shock interactions with a planar interface between different materials. These calculations capture much of the physics of typical material dynamics experiments, without requiring spatially-resolving simulations. Example calculations were made of loading histories in metals, illustrating the effects of plastic work on the temperatures induced in quasi-isentropic and shock-release experiments, and the effect of a phase transition.
We study the interplay of crystal field splitting and Hund coupling in a two-orbital model which captures the essential physics of systems with two electrons or holes in the e_g shell. We use single site dynamical mean field theory with a recently de veloped impurity solver which is able to access strong couplings and low temperatures. The fillings of the orbitals and the location of phase boundaries are computed as a function of Coulomb repulsion, exchange coupling and crystal field splitting. We find that the Hund coupling can drive the system into a novel Mott insulating phase with vanishing orbital susceptibility. Away from half-filling, the crystal field splitting can induce an orbital selective Mott state.
Spatiotemporal pattern formation in a product-activated enzymic reaction at high enzyme concentrations is investigated. Stochastic simulations show that catalytic turnover cycles of individual enzymes can become coherent and that complex wave pattern s of molecular synchronization can develop. The analysis based on the mean-field approximation indicates that the observed patterns result from the presence of Hopf and wave bifurcations in the considered system.
Potassium intercalation in graphite is investigated by first-principles theory. The bonding in the potassium-graphite compound is reasonably well accounted for by traditional semilocal density functional theory (DFT) calculations. However, to investi gate the intercalate formation energy from pure potassium atoms and graphite requires use of a description of the graphite interlayer binding and thus a consistent account of the nonlocal dispersive interactions. This is included seamlessly with ordinary DFT by a van der Waals density functional (vdW-DF) approach [Phys. Rev. Lett. 92, 246401 (2004)]. The use of the vdW-DF is found to stabilize the graphite crystal, with crystal parameters in fair agreement with experiments. For graphite and potassium-intercalated graphite structural parameters such as binding separation, layer binding energy, formation energy, and bulk modulus are reported. Also the adsorption and sub-surface potassium absorption energies are reported. The vdW-DF description, compared with the traditional semilocal approach, is found to weakly soften the elastic response.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا