No Arabic abstract
We propose a general method to obtain the scalar worldline Green function on an arbitrary 1D topological space, with which the first-quantized method of evaluating 1-loop Feynman diagrams can be generalized to calculate arbitrary ones. The electric analog of the worldline Green function problem is found and a compact expression for the worldline Green function is given, which has similar structure to the 2D bosonic Green function of the closed bosonic string.
We will present some (formal) arguments that any Feynman diagram can be understood as a particular case of a Horn-type multivariable hypergeometric function. The advantages and disadvantages of this type of approach to the evaluation of Feynman diagrams is discussed.
We review the hypergeometric function approach to Feynman diagrams. Special consideration is given to the construction of the Laurent expansion. As an illustration, we describe a collection of physically important one-loop vertex diagrams for which this approach is useful.
The differential-reduction algorithm, which allows one to express generalized hypergeometric functions with parameters of arbitrary values in terms of such functions with parameters whose values differ from the original ones by integers, is discussed in the context of evaluating Feynman diagrams. Where this is possible, we compare our results with those obtained using standard techniques. It is shown that the criterion of reducibility of multiloop Feynman integrals can be reformulated in terms of the criterion of reducibility of hypergeometric functions. The relation between the numbers of master integrals obtained by differential reduction and integration by parts is discussed.
In this paper we show how Feynman diagrams, which are used as a tool to implement perturbation theory in quantum field theory, can be very useful also in classical mechanics, provided we introduce also at the classical level concepts like path integrals and generating functionals.
We develop a new representation for the integrals associated with Feynman diagrams. This leads directly to a novel method for the numerical evaluation of these integrals, which avoids the use of Monte Carlo techniques. Our approach is based on based on the theory of generalized sinc ($sin(x)/x$) functions, from which we derive an approximation to the propagator that is expressed as an infinite sum. When the propagators in the Feynman integrals are replaced with the approximate form all integrals over internal momenta and vertices are converted into Gaussians, which can be evaluated analytically. Performing the Gaussians yields a multi-dimensional infinite sum which approximates the corresponding Feynman integral. The difference between the exact result and this approximation is set by an adjustable parameter, and can be made arbitrarily small. We discuss the extraction of regularization independent quantities and demonstrate, both in theory and practice, that these sums can be evaluated quickly, even for third or fourth order diagrams. Lastly, we survey strategies for numerically evaluating the multi-dimensional sums. We illustrate the method with specific examples, including the the second order sunset diagram from quartic scalar field theory, and several higher-order diagrams. In this initial paper we focus upon scalar field theories in Euclidean spacetime, but expect that this approach can be generalized to fields with spin.