No Arabic abstract
We conduct a large-scale social media-based study of oral health during the COVID-19 pandemic based on tweets from 9,104 Twitter users across 26 states (with sufficient samples) in the United States for the period between November 12, 2020 and June 14, 2021. To better understand how discussions on different topics/oral diseases vary across the users, we acquire or infer demographic information of users and other characteristics based on retrieved information from user profiles. Women and younger adults (19-29) are more likely to talk about oral health problems. We use the LDA topic model to extract the major topics/oral diseases in tweets. Overall, 26.70% of the Twitter users talk about wisdom tooth pain/jaw hurt, 23.86% tweet about dental service/cavity, 18.97% discuss chipped tooth/tooth break, 16.23% talk about dental pain, and the rest are about tooth decay/gum bleeding. By conducting logistic regression, we find that discussions vary across user characteristics. More importantly, we find social disparities in oral health during the pandemic. Specifically, we find that health insurance coverage rate is the most significant predictor in logistic regression for topic prediction. People from counties with higher insurance coverage tend to tweet less about all topics of oral diseases. People from counties at a higher risk of COVID-19 talk more about tooth decay/gum bleeding and chipped tooth/tooth break. Older adults (50+), who are vulnerable to COVID-19, are more likely to discuss dental pain. To our best knowledge, this is the first large-scale social media-based study to analyze and understand oral health in America amid the COVID-19 pandemic. We hope the findings of our study through the lens of social media can provide insights for oral health practitioners and policy makers.
Online social media provides a channel for monitoring peoples social behaviors and their mental distress. Due to the restrictions imposed by COVID-19 people are increasingly using online social networks to express their feelings. Consequently, there is a significant amount of diverse user-generated social media content. However, COVID-19 pandemic has changed the way we live, study, socialize and recreate and this has affected our well-being and mental health problems. There are growing researches that leverage online social media analysis to detect and assess users mental status. In this paper, we survey the literature of social media analysis for mental disorders detection, with a special focus on the studies conducted in the context of COVID-19 during 2020-2021. Firstly, we classify the surveyed studies in terms of feature extraction types, varying from language usage patterns to aesthetic preferences and online behaviors. Secondly, we explore detection methods used for mental disorders detection including machine learning and deep learning detection methods. Finally, we discuss the challenges of mental disorder detection using social media data, including the privacy and ethical concerns, as well as the technical challenges of scaling and deploying such systems at large scales, and discuss the learnt lessons over the last few years.
Identifying superspreaders of disease is a pressing concern for society during pandemics such as COVID-19. Superspreaders represent a group of people who have much more social contacts than others. The widespread deployment of WLAN infrastructure enables non-invasive contact tracing via peoples ubiquitous mobile devices. This technology offers promise for detecting superspreaders. In this paper, we propose a general framework for WLAN-log-based superspreader detection. In our framework, we first use WLAN logs to construct contact graphs by jointly considering human symmetric and asymmetric interactions. Next, we adopt three vertex centrality measurements over the contact graphs to generate three groups of superspreader candidates. Finally, we leverage SEIR simulation to determine groups of superspreaders among these candidates, who are the most critical individuals for the spread of disease based on the simulation results. We have implemented our framework and evaluate it over a WLAN dataset with 41 million log entries from a large-scale university. Our evaluation shows superspreaders exist on university campuses. They change over the first few weeks of a semester, but stabilize throughout the rest of the term. The data also demonstrate that both symmetric and asymmetric contact tracing can discover superspreaders, but the latter performs better with daily contact graphs. Further, the evaluation shows no consistent differences among three vertex centrality measures for long-term (i.e., weekly) contact graphs, which necessitates the inclusion of SEIR simulation in our framework. We believe our proposed framework and these results may provide timely guidance for public health administrators regarding effective testing, intervention, and vaccination policies.
The COVID-19 pandemic has affected peoples lives around the world on an unprecedented scale. We intend to investigate hoarding behaviors in response to the pandemic using large-scale social media data. First, we collect hoarding-related tweets shortly after the outbreak of the coronavirus. Next, we analyze the hoarding and anti-hoarding patterns of over 42,000 unique Twitter users in the United States from March 1 to April 30, 2020, and dissect the hoarding-related tweets by age, gender, and geographic location. We find the percentage of females in both hoarding and anti-hoarding groups is higher than that of the general Twitter user population. Furthermore, using topic modeling, we investigate the opinions expressed towards the hoarding behavior by categorizing these topics according to demographic and geographic groups. We also calculate the anxiety scores for the hoarding and anti-hoarding related tweets using a lexical approach. By comparing their anxiety scores with the baseline Twitter anxiety score, we reveal further insights. The LIWC anxiety mean for the hoarding-related tweets is significantly higher than the baseline Twitter anxiety mean. Interestingly, beer has the highest calculated anxiety score compared to other hoarded items mentioned in the tweets.
We present a benchmark database of public social media postings from the United Kingdom related to the Covid-19 pandemic for academic research purposes, along with some initial analysis, including a taxonomy of key themes organised by keyword. This release supports the findings of a research study funded by the Scottish Government Chief Scientist Office that aims to investigate social sentiment in order to understand the response to public health measures implemented during the pandemic.
The recent COVID-19 pandemic has caused unprecedented impact across the globe. We have also witnessed millions of people with increased mental health issues, such as depression, stress, worry, fear, disgust, sadness, and anxiety, which have become one of the major public health concerns during this severe health crisis. For instance, depression is one of the most common mental health issues according to the findings made by the World Health Organisation (WHO). Depression can cause serious emotional, behavioural and physical health problems with significant consequences, both personal and social costs included. This paper studies community depression dynamics due to COVID-19 pandemic through user-generated content on Twitter. A new approach based on multi-modal features from tweets and Term Frequency-Inverse Document Frequency (TF-IDF) is proposed to build depression classification models. Multi-modal features capture depression cues from emotion, topic and domain-specific perspectives. We study the problem using recently scraped tweets from Twitter users emanating from the state of New South Wales in Australia. Our novel classification model is capable of extracting depression polarities which may be affected by COVID-19 and related events during the COVID-19 period. The results found that people became more depressed after the outbreak of COVID-19. The measures implemented by the government such as the state lockdown also increased depression levels. Further analysis in the Local Government Area (LGA) level found that the community depression level was different across different LGAs. Such granular level analysis of depression dynamics not only can help authorities such as governmental departments to take corresponding actions more objectively in specific regions if necessary but also allows users to perceive the dynamics of depression over the time.