Do you want to publish a course? Click here

Early Science with the Large Millimeter Telescope: a 1.1 mm AzTEC Survey of Red-$Herschel$ dusty star-forming galaxies

171   0   0.0 ( 0 )
 Added by Alfredo Monta\\~na
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present LMT/AzTEC 1.1mm observations of $sim100$ luminous high-redshift dusty star-forming galaxy candidates from the $sim600,$sq.deg $Herschel$-ATLAS survey, selected on the basis of their SPIRE red far-infrared colours and with $S_{500murm m}=35-80$ mJy. With an effective $theta_{rm FWHM}approx9.5,$ arcsec angular resolution, our observations reveal that at least 9 per cent of the targets break into multiple systems with SNR $geq 4$ members. The fraction of multiple systems increases to $sim23,$ per cent (or more) if some non-detected targets are considered multiples, as suggested by the data. Combining the new AzTEC and deblended $Herschel$ photometry we derive photometric redshifts, IR luminosities, and star formation rates. While the median redshifts of the multiple and single systems are similar $(z_{rm med}approx3.6)$, the redshift distribution of the latter is skewed towards higher redshifts. Of the AzTEC sources $sim85,$ per cent lie at $z_{rm phot}>3$ while $sim33,$ per cent are at $z_{rm phot}>4$. This corresponds to a lower limit on the space density of ultra-red sources at $4<z<6$ of $sim3times10^{-7}, textrm{Mpc}^{-3}$ with a contribution to the obscured star-formation of $gtrsim 8times10^{-4}, textrm{M}_odot textrm{yr}^{-1} textrm{Mpc}^{-3}$. Some of the multiple systems have members with photometric redshifts consistent among them suggesting possible physical associations. Given their angular separations, these systems are most likely galaxy over-densities and/or early-stage pre-coalescence mergers. Finally, we present 3mm LMT/RSR spectroscopic redshifts of six red-$Herschel$ galaxies at $z_{rm spec}=3.85-6.03$, two of them (at $z sim 4.7$) representing new redshift confirmations. Here we release the AzTEC and deblended $Herschel$ photometry as well as catalogues of the most promising interacting systems and $z>4$ galaxies.



rate research

Read More

We present a 1.1~mm census of dense cores in the Mon~R2 Giant Molecular Cloud with the AzTEC instrument on the Large Millimeter Telescope (LMT). We detect 295 cores (209 starless, and 86 with protostars) in a two square degree shallow survey. We also carry out a deep follow-up survey of 9 regions with low to intermediate ($3<A_V<7$) gas column densities and detect 60 new cores in the deeper survey which allows us to derive a completeness limit. After performing corrections for low signal-to-noise cores, we find a median core mass of $sim 2.1 text{M}_{odot}$ and a median size of $ 0.08$~pc. $46%$ of the cores (141) have masses exceeding the local Bonor-Ebert mass for cores with T=12K, suggesting that in the absence of supporting non-thermal pressure, these regions are unstable to gravitational collapse. We present the core mass function (CMF) for various subdivisions of the core sample. We find that cores with masses $>$10~$M_{odot}$ are exclusively found in regions with high core number densities and that the CMF of the starless cores has an excess of low-mass cores ($<$5~$M_{odot}$) compared to the CMF of protostellar cores. We report a power law correlation of index $1.99 pm 0.03$ between local core mass density and gas column density (as traced by Herschel) over a wide range of size scales (0.3-5~pc). This power law is consistent with that predicted for thermal fragmentation of a self-gravitating sheet.
Measuring redshifted CO line emission is an unambiguous method for obtaining an accurate redshift and total cold gas content of optically faint, dusty starburst systems. Here, we report the first successful spectroscopic redshift determination of AzTEC J095942.9+022938 (COSMOS AzTEC-1), the brightest 1.1mm continuum source found in the AzTEC/JCMT survey (Scott et al. 2008), through a clear detection of the redshifted CO (4-3) and CO (5-4) lines using the Redshift Search Receiver on the Large Millimeter Telescope. The CO redshift of $z=4.3420pm0.0004$ is confirmed by the detection of the redshifted 158 micron [C II] line using the Submillimeter Array. The new redshift and Herschel photometry yield $L_{FIR}=(1.1pm0.1)times 10^{13} L_odot$ and $SFR = 1300, M_odot$ yr$^{-1}$. Its molecular gas mass derived using the ULIRG conversion factor is $1.4pm0.2 times 10^{11} M_odot$ while the total ISM mass derived from the 1.1mm dust continuum is $3.7pm0.7 times 10^{11} M_odot$ assuming dust temperature of 35 K. Our dynamical mass analysis suggests that the compact gas disk ($rapprox 1.1$ kpc, inferred from dust continuum and SED analysis) has to be nearly face-on, providing a natural explanation for the uncommonly bright, compact stellar light seen by the HST. The [C II] line luminosity $L_{[C~II]} = 7.8pm1.1 times 10^9 L_odot$ is remarkably high, but it is only 0.04 per cent of the total IR luminosity. AzTEC COSMOS-1 and other high redshift sources with a spatially resolved size extend the tight trend seen between [C II]/FIR ratio and $Sigma_{FIR}$ among IR-bright galaxies reported by Diaz-Santos et al. (2013) by more than an order of magnitude, supporting the explanation that the higher intensity of the IR radiation field is responsible for the [C II] deficiency seen among luminous starburst galaxies.
The largest Herschel extragalactic surveys, H-ATLAS and HerMES, have selected a sample of ultrared dusty, star-forming galaxies (DSFGs) with rising SPIRE flux densities ($S_{500} > S_{350} > S_{250}$; so-called 500 $mu$m-risers) as an efficient way for identifying DSFGs at higher redshift ($z > 4$). In this paper, we present a large Spitzer follow-up program of 300 Herschel ultrared DSFGs. We have obtained high-resolution ALMA, NOEMA, and SMA data for 63 of them, which allow us to securely identify the Spitzer/IRAC counterparts and classify them as gravitationally lensed or unlensed. Within the 63 ultrared sources with high-resolution data, $sim$65% appear to be unlensed, and $sim$27% are resolved into multiple components. We focus on analyzing the unlensed sample by directly performing multi-wavelength spectral energy distribution (SED) modeling to derive their physical properties and compare with the more numerous $z sim 2$ DSFG population. The ultrared sample has a median redshift of 3.3, stellar mass of 3.7 $times$ 10$^{11}$ $M_{odot}$, star formation rate (SFR) of 730 $M_{odot}$yr$^{-1}$, total dust luminosity of 9.0 $times$ 10$^{12}$ $L_{odot}$, dust mass of 2.8 $times$ 10$^9$ $M_{odot}$, and V-band extinction of 4.0, which are all higher than those of the ALESS DSFGs. Based on the space density, SFR density, and stellar mass density estimates, we conclude that our ultrared sample cannot account for the majority of the star-forming progenitors of the massive, quiescent galaxies found in infrared surveys. Our sample contains the rarer, intrinsically most dusty, luminous and massive galaxies in the early universe that will help us understand the physical drivers of extreme star formation.
The Herschel Multi-tiered Extragalactic Survey (HerMES) has identified large numbers of dusty star-forming galaxies (DSFGs) over a wide range in redshift. A detailed understanding of these DSFGs is hampered by the limited spatial resolution of Herschel. We present 870um 0.45 resolution imaging from the Atacama Large Millimeter/submillimeter Array (ALMA) of 29 HerMES DSFGs with far-infrared (FIR) flux densities in between the brightest of sources found by Herschel and fainter DSFGs found in ground-based sub-millimeter (sub-mm) surveys. We identify 62 sources down to the 5-sigma point-source sensitivity limit in our ALMA sample (sigma~0.2mJy), of which 6 are strongly lensed (showing multiple images) and 36 experience significant amplification (mu>1.1). To characterize the properties of the ALMA sources, we introduce and make use of uvmcmcfit, a publicly available Markov chain Monte Carlo analysis tool for interferometric observations of lensed galaxies. Our lens models tentatively favor intrinsic number counts for DSFGs with a steep fall off above 8mJy at 880um. Nearly 70% of the Herschel sources comprise multiple ALMA counterparts, consistent with previous research indicating that the multiplicity rate is high in bright sub-mm sources. Our ALMA sources are located significantly closer to each other than expected based on results from theoretical models as well as fainter DSFGs identified in the LABOCA ECDFS Submillimeter Survey. The high multiplicity rate and low projected separations argue in favor of interactions and mergers driving the prodigious emission from the brightest DSFGs as well as the sharp downturn above S_880=8mJy.
208 - H. Umehata , Y. Tamura , K. Kohno 2014
We present the results from a 1.1 mm imaging survey of the SSA22 field, known for having an overdensity of z=3.1 Lyman-alpha emitting galaxies (LAEs), taken with the AzTEC camera on the Atacama Submillimeter Telescope Experiment (ASTE). We imaged a 950 arcmin$^2$ field down to a 1 sigma sensitivity of 0.7-1.3 mJy/beam to find 125 submillimeter galaxies (SMGs) with a signal to noise ratio >= 3.5. Counterpart identification using radio and near/mid-infrared data was performed and one or more counterpart candidates were found for 59 SMGs. Photometric redshifts based on optical to near-infrared images were evaluated for 45 SMGs of these SMGs with Spitzer/IRAC data, and the median value is found to be z=2.4. By combining these estimation with estimates from the literature we determined that 10 SMGs might lie within the large-scale structure at z=3.1. The two-point angular cross-correlation function between LAEs and SMGs indicates that the positions of the SMGs are correlated with the z=3.1 protocluster. These results suggest that the SMGs were formed and evolved selectively in the high dense environment of the high redshift universe. This picture is consistent with the predictions of the standard model of hierarchical structure formation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا