Do you want to publish a course? Click here

A backend-agnostic, quantum-classical framework for simulations of chemistry in C++

70   0   0.0 ( 0 )
 Added by Daniel Claudino
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

As quantum computing hardware systems continue to advance, the research and development of performant, scalable, and extensible software architectures, languages, models, and compilers is equally as important in order to bring this novel coprocessing capability to a diverse group of domain computational scientists. For the field of quantum chemistry, applications and frameworks exists for modeling and simulation tasks that scale on heterogeneous classical architectures, and we envision the need for similar frameworks on heterogeneous quantum-classical platforms. Here we present the XACC system-level quantum computing framework as a platform for prototyping, developing, and deploying quantum-classical software that specifically targets chemistry applications. We review the fundamental design features in XACC, with special attention to its extensibility and modularity for key quantum programming workflow interfaces, and provide an overview of the interfaces most relevant to simulations of chemistry. A series of examples demonstrating some of the state-of-the-art chemistry algorithms currently implemented in XACC are presented, while also illustrating the various APIs that would enable the community to extend, modify, and devise new algorithms and applications in the realm of chemistry.



rate research

Read More

Proposals for near-term experiments in quantum chemistry on quantum computers leverage the ability to target a subset of degrees of freedom containing the essential quantum behavior, sometimes called the active space. This approximation allows one to treat more difficult problems using fewer qubits and lower gate depths than would otherwise be possible. However, while this approximation captures many important qualitative features, it may leave the results wanting in terms of absolute accuracy (basis error) of the representation. In traditional approaches, increasing this accuracy requires increasing the number of qubits and an appropriate increase in circuit depth as well. Here we introduce a technique requiring no additional qubits or circuit depth that is able to remove much of this approximation in favor of additional measurements. The technique is constructed and analyzed theoretically, and some numerical proof of concept calculations are shown. As an example, we show how to achieve the accuracy of a 20 qubit representation using only 4 qubits and a modest number of additional measurements for a simple hydrogen molecule. We close with an outlook on the impact this technique may have on both near-term and fault-tolerant quantum simulations.
Quantum computing, an innovative computing system carrying prominent processing rate, is meant to be the solutions to problems in many fields. Among these realms, the most intuitive application is to help chemical researchers correctly de-scribe strong correlation and complex systems, which are the great challenge in current chemistry simulation. In this paper, we will present a standalone quantum simulation tool for chemistry, ChemiQ, which is designed to assist people carry out chemical research or molecular calculation on real or virtual quantum computers. Under the idea of modular programming in C++ language, the software is designed as a full-stack tool without third-party physics or chemistry application packages. It provides services as follow: visually construct molecular structure, quickly simulate ground-state energy, scan molecular potential energy curve by distance or angle, study chemical reaction, and return calculation results graphically after analysis.
We present a quantum chemistry benchmark for noisy intermediate-scale quantum computers that leverages the variational quantum eigensolver, active space reduction, a reduced unitary coupled cluster ansatz, and reduced density purification as error mitigation. We demonstrate this benchmark on the 20 qubit IBM Tokyo and 16 qubit Rigetti Aspen processors via the simulation of alkali metal hydrides (NaH, KH, RbH),with accuracy of the computed ground state energy serving as the primary benchmark metric. We further parameterize this benchmark suite on the trial circuit type, the level of symmetry reduction, and error mitigation strategies. Our results demonstrate the characteristically high noise level present in near-term superconducting hardware, but provide a relevant baseline for future improvement of the underlying hardware, and a means for comparison across near-term hardware types. We also demonstrate how to reduce the noise in post processing with specific error mitigation techniques. Particularly, the adaptation of McWeeny purification of noisy density matrices dramatically improves accuracy of quantum computations, which, along with adjustable active space, significantly extends the range of accessible molecular systems. We demonstrate that for specific benchmark settings, the accuracy metric can reach chemical accuracy when computing over the cloud on certain quantum computers.
93 - Shijie Wei , Hang Li , GuiLu Long 2019
Quantum simulation of quantum chemistry is one of the most compelling applications of quantum computing. It is of particular importance in areas ranging from materials science, biochemistry and condensed matter physics. Here, we propose a full quantum eigensolver (FQE) algorithm to calculate the molecular ground energies and electronic structures using quantum gradient descent. Compared to existing classical-quantum hybrid methods such as variational quantum eigensolver (VQE), our method removes the classical optimizer and performs all the calculations on a quantum computer with faster convergence. The gradient descent iteration depth has a favorable complexity that is logarithmically dependent on the system size and inverse of the precision. Moreover, the FQE can be further simplified by exploiting perturbation theory for the calculations of intermediate matrix elements, and obtain results with a precision that satisfies the requirement of chemistry application. The full quantum eigensolver can be implemented on a near-term quantum computer. With the rapid development of quantum computing hardware, FQE provides an efficient and powerful tool to solve quantum chemistry problems.
Methods for electronic structure based on Gaussian and molecular orbital discretizations offer a well established, compact representation that forms much of the foundation of correlated quantum chemistry calculations on both classical and quantum computers. Despite their ability to describe essential physics with relatively few basis functions, these representations can suffer from a quartic growth of the number of integrals. Recent results have shown that, for some quantum and classical algorithms, moving to representations with diagonal two-body operators can result in dramatically lower asymptotic costs, even if the number of functions required increases significantly. We introduce a way to interpolate between the two regimes in a systematic and controllable manner, such that the number of functions is minimized while maintaining a block diagonal structure of the two-body operator and desirable properties of an original, primitive basis. Techniques are analyzed for leveraging the structure of this new representation on quantum computers. Empirical results for hydrogen chains suggest a scaling improvement from $O(N^{4.5})$ in molecular orbital representations to $O(N^{2.6})$ in our representation for quantum evolution in a fault-tolerant setting, and exhibit a constant factor crossover at 15 to 20 atoms. Moreover, we test these methods using modern density matrix renormalization group methods classically, and achieve excellent accuracy with respect to the complete basis set limit with a speedup of 1-2 orders of magnitude with respect to using the primitive or Gaussian basis sets alone. These results suggest our representation provides significant cost reductions while maintaining accuracy relative to molecular orbital or strictly diagonal approaches for modest-sized systems in both classical and quantum computation for correlated systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا