Do you want to publish a course? Click here

Polynomial-Time Algorithms for Multi-Agent Minimal-Capacity Planning

70   0   0.0 ( 0 )
 Added by Murat Cubuktepe
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We study the problem of minimizing the resource capacity of autonomous agents cooperating to achieve a shared task. More specifically, we consider high-level planning for a team of homogeneous agents that operate under resource constraints in stochastic environments and share a common goal: given a set of target locations, ensure that each location will be visited infinitely often by some agent almost surely. We formalize the dynamics of agents by consumption Markov decision processes. In a consumption Markov decision process, the agent has a resource of limited capacity. Each action of the agent may consume some amount of the resource. To avoid exhaustion, the agent can replenish its resource to full capacity in designated reload states. The resource capacity restricts the capabilities of the agent. The objective is to assign target locations to agents, and each agent is only responsible for visiting the assigned subset of target locations repeatedly. Moreover, the assignment must ensure that the agents can carry out their tasks with minimal resource capacity. We reduce the problem of finding target assignments for a team of agents with the lowest possible capacity to an equivalent graph-theoretical problem. We develop an algorithm that solves this graph problem in time that is emph{polynomial} in the number of agents, target locations, and size of the consumption Markov decision process. We demonstrate the applicability and scalability of the algorithm in a scenario where hundreds of unmanned underwater vehicles monitor hundreds of locations in environments with stochastic ocean currents.



rate research

Read More

We consider the challenging problem of online planning for a team of agents to autonomously search and track a time-varying number of mobile objects under the practical constraint of detection range limited onboard sensors. A standard POMDP with a value function that either encourages discovery or accurate tracking of mobile objects is inadequate to simultaneously meet the conflicting goals of searching for undiscovered mobile objects whilst keeping track of discovered objects. The planning problem is further complicated by misdetections or false detections of objects caused by range limited sensors and noise inherent to sensor measurements. We formulate a novel multi-objective POMDP based on information theoretic criteria, and an online multi-object tracking filter for the problem. Since controlling multi-agent is a well known combinatorial optimization problem, assigning control actions to agents necessitates a greedy algorithm. We prove that our proposed multi-objective value function is a monotone submodular set function; consequently, the greedy algorithm can achieve a (1-1/e) approximation for maximizing the submodular multi-objective function.
This paper investigates the problem of distributed stochastic approximation in multi-agent systems. The algorithm under study consists of two steps: a local stochastic approximation step and a diffusion step which drives the network to a consensus. The diffusion step uses row-stochastic matrices to weight the network exchanges. As opposed to previous works, exchange matrices are not supposed to be doubly stochastic, and may also depend on the past estimate. We prove that non-doubly stochastic matrices generally influence the limit points of the algorithm. Nevertheless, the limit points are not affected by the choice of the matrices provided that the latter are doubly-stochastic in expectation. This conclusion legitimates the use of broadcast-like diffusion protocols, which are easier to implement. Next, by means of a central limit theorem, we prove that doubly stochastic protocols perform asymptotically as well as centralized algorithms and we quantify the degradation caused by the use of non doubly stochastic matrices. Throughout the paper, a special emphasis is put on the special case of distributed non-convex optimization as an illustration of our results.
Multi-agent Markov Decision Processes (MMDPs) arise in a variety of applications including target tracking, control of multi-robot swarms, and multiplayer games. A key challenge in MMDPs occurs when the state and action spaces grow exponentially in the number of agents, making computation of an optimal policy computationally intractable for medium- to large-scale problems. One property that has been exploited to mitigate this complexity is transition independence, in which each agents transition probabilities are independent of the states and actions of other agents. Transition independence enables factorization of the MMDP and computation of local agent policies but does not hold for arbitrary MMDPs. In this paper, we propose an approximate transition dependence property, called $delta$-transition dependence and develop a metric for quantifying how far an MMDP deviates from transition independence. Our definition of $delta$-transition dependence recovers transition independence as a special case when $delta$ is zero. We develop a polynomial time algorithm in the number of agents that achieves a provable bound on the global optimum when the reward functions are monotone increasing and submodular in the agent actions. We evaluate our approach on two case studies, namely, multi-robot control and multi-agent patrolling example.
We study the multi-agent safe control problem where agents should avoid collisions to static obstacles and collisions with each other while reaching their goals. Our core idea is to learn the multi-agent control policy jointly with learning the control barrier functions as safety certificates. We propose a novel joint-learning framework that can be implemented in a decentralized fashion, with generalization guarantees for certain function classes. Such a decentralized framework can adapt to an arbitrarily large number of agents. Building upon this framework, we further improve the scalability by incorporating neural network architectures that are invariant to the quantity and permutation of neighboring agents. In addition, we propose a new spontaneous policy refinement method to further enforce the certificate condition during testing. We provide extensive experiments to demonstrate that our method significantly outperforms other leading multi-agent control approaches in terms of maintaining safety and completing original tasks. Our approach also shows exceptional generalization capability in that the control policy can be trained with 8 agents in one scenario, while being used on other scenarios with up to 1024 agents in complex multi-agent environments and dynamics.
In most multiagent applications, communication is essential among agents to coordinate their actions, and thus achieve their goal. However, communication often has a related cost that affects overall system performance. In this paper, we draw inspiration from studies of epistemic planning to develop a communication model for agents that allows them to cooperate and make communication decisions effectively within a planning task. The proposed model treats a communication process as an action that modifies the epistemic state of the team. In two simulated tasks, we evaluate whether agents can cooperate effectively and achieve higher performance using communication protocol modeled in our epistemic planning framework. Based on an empirical study conducted using search and rescue tasks with different scenarios, our results show that the proposed model improved team performance across all scenarios compared with baseline models.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا