We analyze the LIGO/Virgo GWTC-2 catalog to study the primary mass distribution of the merging black holes. We perform hierarchical Bayesian analysis, and examine whether the mass distribution has a sharp cutoff for primary black hole masses below $65 M_odot$, as predicted in pulsational pair instability supernova model. We construct two empirical mass functions. One is a piece-wise function with two power-law segments jointed by a sudden drop. The other consists of a main truncated power-law component, a Gaussian component, and a third very massive component. Both models can reasonably fit the data and a sharp drop of the mass distribution is found at $sim 50M_odot$, suggesting that the majority of the observed black holes can be explained by the stellar evolution scenarios in which the pulsational pair-instability process takes place. On the other hand, the very massive sub-population, which accounts for at most several percents of the total, may be formed through hierarchical mergers or other processes.