No Arabic abstract
The interstellar turbulence is magnetized and thus anisotropic. The anisotropy of turbulent magnetic fields and velocities is imprinted in the related observables, rotation measures (RMs), and velocity centroids (VCs). This anisotropy provides valuable information on both the direction and strength of the magnetic field. However, its measurement is difficult especially in highly supersonic turbulence in cold interstellar phases due to the distortions by isotropic density fluctuations. By using 3D simulations of supersonic and sub-Alfvenic magnetohydrodynamic(MHD) turbulence, we find that the problem can be alleviated when we selectively sample the volume-filling low-density regions in supersonic MHD turbulence. Our results show that in these low-density regions, the anisotropy of RM and VC fluctuations depends on the Alfvenic Mach number as $rm M_A^{-4/3}$. This anisotropy-$rm M_A$ relation is theoretically expected for sub-Alfv enic MHD turbulence and confirmed by our synthetic observations of $^{12}$CO emission. It provides a new method for measuring the plane-of-the-sky magnetic fields in cold interstellar phases.
Probing magnetic fields in the interstellar medium (ISM) is notoriously challenging. Motivated by the modern theories of magnetohydrodynamic (MHD) turbulence and turbulence anisotropy, we introduce the Structure-Function Analysis (SFA) as a new approach to measure the magnetic field orientation and estimate the magnetization. We analyze the statistics of turbulent velocities in three-dimensional compressible MHD simulations through the second-order structure functions in both local and global reference frames. In the sub-Alfvenic turbulence with the magnetic energy larger than the turbulent energy, the SFA of turbulent velocities measured in the directions perpendicular and parallel to the magnetic field can be significantly different. Their ratio has a power-law dependence on the Alfven Mach number $M_A$, which is inversely proportional to the magnetic field strength. We demonstrate that the anisotropic structure functions of turbulent velocities can be used to estimate both the orientation and strength of magnetic fields. With turbulent velocities measured using different tracers, our approach can be generally applied to probing the magnetic fields in the multi-phase interstellar medium.
We review the use of velocity centroids statistics to recover information of interstellar turbulence from observations. Velocity centroids have been used for a long time now to retrieve information about the scaling properties of the turbulent velocity field in the interstellar medium. We show that, while they are useful to study subsonic turbulence, they do not trace the statistics of velocity in supersonic turbulence, because they are highly influenced by fluctuations of density. We show also that for sub-Alfvenic turbulence (both supersonic and subsonic) two-point statistics (e.g. correlation functions or power-spectra) are anisotropic. This anisotropy can be used to determine the direction of the mean magnetic field projected in the plane of the sky.
The properties of supersonic isothermal turbulence influence a variety of astrophysical phenomena, including the structure and evolution of star forming clouds. This work presents a simple model for the structure of dense regions in turbulence in which the density distribution behind isothermal shocks originates from rough hydrostatic balance between the pressure gradient behind the shock and its deceleration from ram pressure applied by the background fluid. Using simulations of supersonic isothermal turbulence and idealized waves moving through a background medium, we show that the structural properties of dense, shocked regions broadly agree with our analytical model. Our work provides a new conceptual picture for describing the dense regions, which complements theoretical efforts to understand the bulk statistical properties of turbulence and attempts to model the more complex features of star forming clouds like magnetic fields, self-gravity, or radiative properties.
We present an analytical study of the statistical properties of integrated emission and velocity centroids for a slightly compressible turbulent slab model, to retrieve the underlying statistics of three-dimensional density and velocity fluctuations. Under the assumptions that the density and velocity fields are homogeneous and isotropic, we derive the expressions of the antenna temperature for an optically thin spectral line observation, and of its successive moments with respect to the line of sight velocity component, focusing on the zeroth (intensity or integrated emission I) and first (non-normalized velocity centroid C) moments. The ratio of the latter to the former is the normalized centroid C_0, whose expression can be linearized for small density fluctuations. To describe the statistics of I, C and C_0, we derive expansions of their autocorrelation functions in powers of density fluctuations and perform a lowest-order real-space calculation of their scaling behaviour, assuming that the density and velocity fields are fractional Brownian motions. We hence confirm, within the scope of this study, the property recently found numerically by Miville-Deschenes, Levrier and Falgarone (2003, ApJ, 593, 831) that the spectral index of the normalized centroid is equal to that of the full velocity field. However, it is also argued that, in order to retrieve the velocity statistics, normalization of centroids may actually not be the best way to remove the influence of density fluctuations. In this respect, we discuss the modified velocity centroids introduced by Lazarian and Esquivel (2003, ApJL, 592, 37) as a possible alternative. In a following paper, we shall present numerical studies aimed at assessing the validity domain of these results.
We present a simulation of isothermal supersonic (rms Mach number $mathcal{M}_{rm rms} sim 3$) turbulent gas with inertial particles (dust) and self-gravity in statistical steady-state, which we compare with a corresponding simulation without self-gravity. The former is in steady state, but close to gravitationally unstable, since we match the scale of the simulation box with Jeans wavelength, which provides the strongest influence of gravity on the dynamics of gas and dust without causing irreversible gravitational collapses. We find that self-gravity does not cause any significant increase in clustering of particles, regardless of particle size, but heavy particles show elevated mean velocities in the presence of self-gravity. The speed distributions are significantly shifted to higher values compared to simulations without self-gravity, but maintains the same shape.