Do you want to publish a course? Click here

Topological gimbal phonons in T-carbon

111   0   0.0 ( 0 )
 Added by Jing-Yang You
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The topological metal states in electronic systems have been extensively studied, but topological phonons were explored only in few examples so far. Here, we expose for the first time that the topological nodal gimbal phonons, type-I and type-II Weyl phonons are simultaneously present in T-carbon, a recently realized new allotrope of carbon. At about 15.2 THz, we find that there exist three mutually intersecting nodal loops (named as nodal gimbal phonons) around {Gamma} point, and two pairs of type-I Weyl phonons on the boundary of Brillouin zone around each X point. In addition, there exist three pairs of type-II Weyl phonons at about 14.5 THz around each L point. It is shown that these exotic topological phonons are protected by corresponding symmetries, and lead to topologically nontrivial surface states. Our findings not only afford plenty of intriguing topological phonon states in a simple material like T-carbon but also provide a new platform to study novel properties of topological phonons, which would facilitate further both experimental and theoretical works in future.



rate research

Read More

150 - J.-H. Kim , K.-J. Han , N.-J. Kim 2008
Using pre-designed trains of femtosecond optical pulses, we have selectively excited coherent phonons of the radial breathing mode of specific-chirality single-walled carbon nanotubes within an ensemble sample. By analyzing the initial phase of the phonon oscillations, we prove that the tube diameter initially increases in response to ultrafast photoexcitation. Furthermore, from excitation profiles, we demonstrate that an excitonic absorption peak of carbon nanotubes periodically oscillates as a function of time when the tube diameter undergoes radial breathing mode oscillations.
Many calculations require a simple classical model for the interactions between sp^2-bonded carbon atoms, as in graphene or carbon nanotubes. Here we present a new valence force model to describe these interactions. The calculated phonon spectrum of graphene and the nanotube breathing-mode energy agree well with experimental measurements and with ab initio calculations. The model does not assume an underlying lattice, so it can also be directly applied to distorted structures. The characteristics and limitations of the model are discussed.
Perovskite oxides exhibit a rich variety of structural phases hosting different physical phenomena that generate multiple technological applications. We find that topological phonons, i.e., nodal rings, nodal lines, and Weyl points, are ubiquitous in oxide perovskites in terms of structures (tetragonal, orthorhombic, and rhombohedral), compounds (BaTiO3, PbTiO3, and SrTiO3), and external conditions (photoexcitation, strain, and temperature). In particular, in the tetragonal phase of these compounds, all types of topological phonons can simultaneously emerge when stabilized by photoexcitation, whereas the tetragonal phase stabilized by thermal fluctuations only hosts a more limited set of topological phonon states. Additionally, we find that the photoexcited carrier concentration can be used to tune the topological phonon states and induce topological transitions even without associated structural phase changes. Overall, we propose oxide perovskites as a versatile platform in which to study topological phonons and their manipulation with light.
We present a detailed study of the vibrational properties of Single Wall Carbon Nanotubes (SWNTs). The phonon dispersions of SWNTs are strongly shaped by the effects of electron-phonon coupling. We analyze the separate contributions of curvature and confinement. Confinement plays a major role in modifying SWNT phonons and is often more relevant than curvature. Due to their one-dimensional character, metallic tubes are expected to undergo Peierls distortions (PD) at T=0K. At finite temperature, PD are no longer present, but phonons with atomic displacements similar to those of the PD are affected by strong Kohn anomalies (KA). We investigate by Density Functional Theory (DFT) KA and PD in metallic SWNTs with diameters up to 3 nm, in the electronic temperature range from 4K to 3000 K. We then derive a set of simple formulas accounting for all the DFT results. Finally, we prove that the static approach, commonly used for the evaluation of phonon frequencies in solids, fails because of the SWNTs reduced dimensionality. The correct description of KA in metallic SWNTs can be obtained only by using a dynamical approach, beyond the adiabatic Born-Oppenheimer approximation, by taking into account non-adiabatic contributions. Dynamic effects induce significant changes in the occurrence and shape of Kohn anomalies. We show that the SWNT Raman G peak can only be interpreted considering the combined dynamic, curvature and confinement effects. We assign the G+ and G- peaks of metallic SWNTs to TO (circumferential) and LO (axial) modes, respectively, the opposite of semiconducting SWNTs.
Research on topological physics of phonons has attracted enormous interest but demands appropriate model materials. Our {it ab initio} calculations identify silicon as an ideal candidate material containing extraordinarily rich topological phonon states. In silicon, we identify various topological nodal lines protected by glide mirror or mirror symmetries and characterized by quantized Berry phase $pi$, which gives drumhead surface states observable from any surface orientations. Remarkably, a novel type of topological nexus phonon is discovered, which is featured by double Fermi-arc-like surface states and distinguished from Weyl phonons by requiring neither inversion nor time-reversal symmetry breaking. Versatile topological states can be created from the nexus phonons, such as Hopf nodal link by strain. Furthermore, we generalize the symmetry analysis to other centrosymmetric systems and find numerous candidate materials, demonstrating the ubiquitous existence of topological phonons in solids. These findings open up new opportunities for studying topological phonons in realistic materials and their influence on surface physics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا