La geometrie de Bakry-Emery et lecart fondamental


Abstract in English

This article is a brief presentation of results surrounding the fundamental gap. We begin by recalling Bakry-Emery geometry and demonstrate connections between eigenvalues of the Laplacian with the Dirichlet and Neumann boundary conditions. We then show a connection between the fundamental gap and Bakry-Emery geometry, concluding with a presentation of the key ideas in Andrewss and Clutterbucks proof of the fundamental gap conjecture. We conclude with a presentation of results for the fundamental gap of triangles and simplices.

Download