Stochastic Inference of Surface-Induced Effects using Brownian Motion


Abstract in English

Brownian motion in confinement and at interfaces is a canonical situation, encountered from fundamental biophysics to nanoscale engineering. Using the Lorenz-Mie framework, we optically record the thermally-induced tridimensional trajectories of individual microparticles, within salty aqueous solutions, in the vicinity of a rigid wall, and in the presence of surface charges. We construct the time-dependent position and displacement probability density functions, and study the non-Gaussian character of the latter which is a direct signature of the hindered mobility near the wall. Based on these distributions, we implement a novel, robust and self-calibrated multifitting method, allowing for the thermal-noise-limited inference of diffusion coefficients spatially-resolved at the nanoscale, equilibrium potentials, and forces at the femtoNewton resolution.

Download