Do you want to publish a course? Click here

NightVision: Generating Nighttime Satellite Imagery from Infra-Red Observations

80   0   0.0 ( 0 )
 Added by Paula Harder
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The recent explosion in applications of machine learning to satellite imagery often rely on visible images and therefore suffer from a lack of data during the night. The gap can be filled by employing available infra-red observations to generate visible images. This work presents how deep learning can be applied successfully to create those images by using U-Net based architectures. The proposed methods show promising results, achieving a structural similarity index (SSIM) up to 86% on an independent test set and providing visually convincing output images, generated from infra-red observations.



rate research

Read More

Multi-spectral satellite imagery provides valuable data at global scale for many environmental and socio-economic applications. Building supervised machine learning models based on these imagery, however, may require ground reference labels which are not available at global scale. Here, we propose a generative model to produce multi-resolution multi-spectral imagery based on Sentinel-2 data. The resulting synthetic images are indistinguishable from real ones by humans. This technique paves the road for future work to generate labeled synthetic imagery that can be used for data augmentation in data scarce regions and applications.
To respond to disasters such as earthquakes, wildfires, and armed conflicts, humanitarian organizations require accurate and timely data in the form of damage assessments, which indicate what buildings and population centers have been most affected. Recent research combines machine learning with remote sensing to automatically extract such information from satellite imagery, reducing manual labor and turn-around time. A major impediment to using machine learning methods in real disaster response scenarios is the difficulty of obtaining a sufficient amount of labeled data to train a model for an unfolding disaster. This paper shows a novel application of semi-supervised learning (SSL) to train models for damage assessment with a minimal amount of labeled data and large amount of unlabeled data. We compare the performance of state-of-the-art SSL methods, including MixMatch and FixMatch, to a supervised baseline for the 2010 Haiti earthquake, 2017 Santa Rosa wildfire, and 2016 armed conflict in Syria. We show how models trained with SSL methods can reach fully supervised performance despite using only a fraction of labeled data and identify areas for further improvements.
86 - Xiao Huang , Di Zhu , Fan Zhang 2021
The rapid development of remote sensing techniques provides rich, large-coverage, and high-temporal information of the ground, which can be coupled with the emerging deep learning approaches that enable latent features and hidden geographical patterns to be extracted. This study marks the first attempt to cross-compare performances of popular state-of-the-art deep learning models in estimating population distribution from remote sensing images, investigate the contribution of neighboring effect, and explore the potential systematic population estimation biases. We conduct an end-to-end training of four popular deep learning architectures, i.e., VGG, ResNet, Xception, and DenseNet, by establishing a mapping between Sentinel-2 image patches and their corresponding population count from the LandScan population grid. The results reveal that DenseNet outperforms the other three models, while VGG has the worst performances in all evaluating metrics under all selected neighboring scenarios. As for the neighboring effect, contradicting existing studies, our results suggest that the increase of neighboring sizes leads to reduced population estimation performance, which is found universal for all four selected models in all evaluating metrics. In addition, there exists a notable, universal bias that all selected deep learning models tend to overestimate sparsely populated image patches and underestimate densely populated image patches, regardless of neighboring sizes. The methodological, experimental, and contextual knowledge this study provides is expected to benefit a wide range of future studies that estimate population distribution via remote sensing imagery.
Generative deep learning has sparked a new wave of Super-Resolution (SR) algorithms that enhance single images with impressive aesthetic results, albeit with imaginary details. Multi-frame Super-Resolution (MFSR) offers a more grounded approach to the ill-posed problem, by conditioning on multiple low-resolution views. This is important for satellite monitoring of human impact on the planet -- from deforestation, to human rights violations -- that depend on reliable imagery. To this end, we present HighRes-net, the first deep learning approach to MFSR that learns its sub-tasks in an end-to-end fashion: (i) co-registration, (ii) fusion, (iii) up-sampling, and (iv) registration-at-the-loss. Co-registration of low-resolution views is learned implicitly through a reference-frame channel, with no explicit registration mechanism. We learn a global fusion operator that is applied recursively on an arbitrary number of low-resolution pairs. We introduce a registered loss, by learning to align the SR output to a ground-truth through ShiftNet. We show that by learning deep representations of multiple views, we can super-resolve low-resolution signals and enhance Earth Observation data at scale. Our approach recently topped the European Space Agencys MFSR competition on real-world satellite imagery.
Semantic segmentation of satellite imagery is a common approach to identify patterns and detect changes around the planet. Most of the state-of-the-art semantic segmentation models are trained in a fully supervised way using Convolutional Neural Network (CNN). The generalization property of CNN is poor for satellite imagery because the data can be very diverse in terms of landscape types, image resolutions, and scarcity of labels for different geographies and seasons. Hence, the performance of CNN doesnt translate well to images from unseen regions or seasons. Inspired by Conditional Generative Adversarial Networks (CGAN) based approach of image-to-image translation for high-resolution satellite imagery, we propose a CGAN framework for land cover classification using medium-resolution Sentinel-2 imagery. We find that the CGAN model outperforms the CNN model of similar complexity by a significant margin on an unseen imbalanced test dataset.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا