We propose a new model-independent mechanism for producing Primordial Black Holes from a period of multi-field inflation. The required enhancement of primordial fluctuations compared to their value at CMB scales naturally occurs when the inflationary trajectory in the landscape exhibits a limited period of strongly non-geodesic motion. Such trajectories with multiple dynamical fields are motivated by the search for ultraviolet completions of inflation. We study analytically and numerically how the parameters describing the bending impact the primordial fluctuations power spectrum and the mass function of Primordial Black Holes. Our mechanism has the potential of exhibiting unique features accessible to observation through its Primordial Black Hole spectrum and stochastic background of gravitational waves, offering a precious glimpse at the dynamics of inflation in the landscape.
We propose a construction with which to resolve the black hole singularity and enable an anisotropic cosmology to emerge from the inside of the hole. The model relies on the addition of an S-brane to the effective action which describes the geometry of space-time. This space-like defect is located inside of the horizon on a surface where the Weyl curvature reaches a limiting value. We study how metric fluctuations evolve from the outside of the black hole to the beginning of the cosmological phase to the future of the S-brane. Our setup addresses i) the black hole singularity problem, ii) the cosmological singularity problem and iii) the information loss paradox since the outgoing Hawking radiation is entangled with the state inside the black hole which becomes the new universe.
We investigate the effects of producing dark matter by Hawking evaporation of primordial black holes (PBHs) in scenarios that may have a second well-motivated dark matter production mechanism, such as freeze-out, freeze-in, or gravitational production. We show that the interplay between PBHs and the alternative sources of dark matter can give rise to model-independent modifications to the required dark matter abundance from each production mechanism, which in turn affect the prospects for dark matter detection. In particular, we demonstrate that for the freeze-out mechanism, accounting for evaporation of PBHs after freeze-out demands a larger annihilation cross section of dark matter particles than its canonical value for a thermal dark matter. For mechanisms lacking thermalization due to a feeble coupling to the thermal bath, we show that the PBH contribution to the dark matter abundance leads to the requirement of an even feebler coupling. Moreover, we show that when a large initial abundance of PBHs causes an early matter-dominated epoch, PBH evaporation alone cannot explain the whole abundance of dark matter today. In this case, an additional production mechanism is required, in contrast to the case when PBHs are formed and evaporate during a radiation-dominated epoch.
We speculate that the early Universe was inside a primordial black hole. The interior of the the black hole is a dS background and the two spacetimes are separated on the surface of black holes event horizon. We argue that this picture provides a natural realization of inflation without invoking the inflaton field. The black hole evaporation by Hawking radiation provides a natural mechanism for terminating inflation so reheating and the hot big bang cosmology starts from the evaporation of black hole to relativistic particles. The quantum gravitational fluctuations at the boundary of black hole generate the nearly scale invariant scalar and tensor perturbations with the ratio of tensor to scalar power spectra at the order of $10^{-3}$. As the black hole evaporates, the radius of its event horizon shrinks and the Hubble expansion rate during inflation increases slowly so the quantum Hawking radiation provides a novel mechanism for the violation of null energy condition in cosmology.
We set a new upper limit on the abundance of primordial black holes (PBH) based on existing X-ray data. PBH interactions with interstellar medium should result in significant fluxes of X-ray photons, which would contribute to the observed number density of compact X-ray objects in galaxies. The data constrain PBH number density in the mass range from a few $M_odot$ to $2times 10^7 M_odot$. PBH density needed to account for the origin of black holes detected by LIGO is marginally allowed.
Open inflation scenario is attracting a renewed interest in the context of string landscape. Since there are a large number of metastable de Sitter vacua in string landscape, tunneling transitions to lower metastable vacua through the bubble nucleation occur quite naturally. Although the deviation of Omega_0 from unity is small by the observational bound, we argue that the effect of this small deviation on the large angle CMB anisotropies can be significant for tensor-type perturbation in open inflation scenario. We consider the situation in which there is a large hierarchy between the energy scale of the quantum tunneling and that of the slow-roll inflation in the nucleated bubble. If the potential just after tunneling is steep enough, a rapid-roll phase appears before the slow-roll inflation. In this case the power spectrum is basically determined by the Hubble rate during the slow-roll inflation. If such rapid-roll phase is absent, the power spectrum keeps the memory of the high energy density there in the large angular components. The amplitude of large angular components can be enhanced due to the effects of the wall fluctuation mode if the bubble wall tension is small. Therefore, one can construct some models in which the deviation of Omega_0 from unity is large enough to produce measurable effects. We also consider a more general class of models, where the false vacuum decay may occur due to Hawking-Moss tunneling, as well as the models involving more than one scalar field. We discuss scalar perturbations in these models and point out that a large set of such models is already ruled out by observational data, unless there was a very long stage of slow-roll inflation after the tunneling. These results show that observational data allow us to test various assumptions concerning the structure of the string theory potentials and the duration of the last stage of inflation.
Jacopo Fumagalli
,Sebastien Renaux-Petel
,John W. Ronayne
.
(2020)
.
"Turning in the landscape: a new mechanism for generating Primordial Black Holes"
.
Jacopo Fumagalli
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا