No Arabic abstract
Transfer entropy is an established method for quantifying directed statistical dependencies in neuroimaging and complex systems datasets. The pairwise (or bivariate) transfer entropy from a source to a target node in a network does not depend solely on the local source-target link weight, but on the wider network structure that the link is embedded in. This relationship is studied using a discrete-time linearly-coupled Gaussian model, which allows us to derive the transfer entropy for each link from the network topology. It is shown analytically that the dependence on the directed link weight is only a first approximation, valid for weak coupling. More generally, the transfer entropy increases with the in-degree of the source and decreases with the in-degree of the target, indicating an asymmetry of information transfer between hubs and low-degree nodes. In addition, the transfer entropy is directly proportional to weighted motif counts involving common parents or multiple walks from the source to the target, which are more abundant in networks with a high clustering coefficient than in random networks. Our findings also apply to Granger causality, which is equivalent to transfer entropy for Gaussian variables. Moreover, similar empirical results on random Boolean networks suggest that the dependence of the transfer entropy on the in-degree extends to nonlinear dynamics.
This paper proposes a novel technique to prove a one-shot version of achievability results in network information theory. The technique is not based on covering and packing lemmas. In this technique, we use an stochastic encoder and decoder with a particular structure for coding that resembles both the ML and the joint-typicality coders. Although stochastic encoders and decoders do not usually enhance the capacity region, their use simplifies the analysis. The Jensen inequality lies at the heart of error analysis, which enables us to deal with the expectation of many terms coming from stochastic encoders and decoders at once. The technique is illustrated via several examples: point-to-point channel coding, Gelfand-Pinsker, Broadcast channel (Marton), Berger-Tung, Heegard-Berger/Kaspi, Multiple description coding and Joint source-channel coding over a MAC. Most of our one-shot results are new. The asymptotic forms of these expressions is the same as that of classical results. Our one-shot bounds in conjunction with multi-dimensional Berry-Essen CLT imply new results in the finite blocklength regime. In particular applying the one-shot result for the memoryless broadcast channel in the asymptotic case, we get the entire region of Martons inner bound without any need for time-sharing.
We introduce an axiomatic approach to entropies and relative entropies that relies only on minimal information-theoretic axioms, namely monotonicity under mixing and data-processing as well as additivity for product distributions. We find that these axioms induce sufficient structure to establish continuity in the interior of the probability simplex and meaningful upper and lower bounds, e.g., we find that every relative entropy must lie between the Renyi divergences of order $0$ and $infty$. We further show simple conditions for positive definiteness of such relative entropies and a characterisation in term of a variant of relative trumping. Our main result is a one-to-one correspondence between entropies and relative entropies.
Network motifs are overrepresented interconnection patterns found in real-world networks. What functional advantages may they offer for building complex systems? We show that most network motifs emerge from interconnections patterns that best exploit the intrinsic stability characteristics of individual nodes. This feature is observed at different scales in a network, from nodes to modules, suggesting an efficient mechanism to stably build complex systems.
The study of motifs in networks can help researchers uncover links between the structure and function of networks in biology, sociology, economics, and many other areas. Empirical studies of networks have identified feedback loops, feedforward loops, and several other small structures as motifs that occur frequently in real-world networks and may contribute by various mechanisms to important functions in these systems. However, these mechanisms are unknown for many of these motifs. We propose to distinguish between structure motifs (i.e., graphlets) in networks and process motifs (which we define as structured sets of walks) on networks and consider process motifs as building blocks of processes on networks. Using the steady-state covariances and steady-state correlations in a multivariate Ornstein--Uhlenbeck process on a network as examples, we demonstrate that the distinction between structure motifs and process motifs makes it possible to gain quantitative insights into mechanisms that contribute to important functions of dynamical systems on networks.
The peer-to-peer (P2P) economy has been growing with the advent of the Internet, with well known brands such as Uber or Airbnb being examples thereof. In the insurance sector the approach is still in its infancy, but some companies have started to explore P2P-based collaborative insurance products (eg. Lemonade in the U.S. or Inspeer in France). The actuarial literature only recently started to consider those risk sharing mechanisms, as in Denuit and Robert (2021) or Feng et al. (2021). In this paper, describe and analyse such a P2P product, with some reciprocal risk sharing contracts. Here, we consider the case where policyholders still have an insurance contract, but the first self-insurance layer, below the deductible, can be shared with friends. We study the impact of the shape of the network (through the distribution of degrees) on the risk reduction. We consider also some optimal setting of the reciprocal commitments, and discuss the introduction of contracts with friends of friends to mitigate some possible drawbacks of having people without enough connections to exchange risks.