No Arabic abstract
Using the framework of operator or Cald{e}ron preconditioning, uniform preconditioners are constructed for elliptic operators of order $2s in [0,2]$ discretized with continuous finite (or boundary) elements. The cost of the preconditioner is the cost of the application an elliptic opposite order operator discretized with discontinuous or continuous finite elements on the same mesh, plus minor cost of linear complexity. Herewith the construction of a so-called dual mesh is avoided.
We propose a multi-level type operator that can be used in the framework of operator (or Cald{e}ron) preconditioning to construct uniform preconditioners for negative order operators discretized by piecewise polynomials on a family of possibly locally refined partitions. The cost of applying this multi-level operator scales linearly in the number of mesh cells. Therefore, it provides a uniform preconditioner that can be applied in linear complexity when used within the preconditioning framework from our earlier work [Math. of Comp., 322(89) (2020), pp. 645-674].
In this paper, two types of Schur complement based preconditioners are studied for twofold and block tridiagonal saddle point problems. One is based on the nested (or recursive) Schur complement, the other is based on an additive type Schur complement after permuting the original saddle point systems. We discuss different preconditioners incorporating the exact Schur complements. It is shown that some of them will lead to positive stable preconditioned systems. Our theoretical analysis is instructive for devising various exact and inexact preconditioners, as well as iterative solvers for many twofold and block tridiagonal saddle point problems.
In this paper we study the linear systems arising from discretized poroelasticity problems. We formulate one block preconditioner for the two-filed Biot model and several preconditioners for the classical three-filed Biot model under the unified relationship framework between well-posedness and preconditioners. By the unified theory, we show all the considered preconditioners are uniformly optimal with respect to material and discretization parameters. Numerical tests demonstrate the robustness of these preconditioners.
Topology optimization for large scale problems continues to be a computational challenge. Several works exist in the literature to address this topic, and all make use of iterative solvers to handle the linear system arising from the Finite Element Analysis (FEA). However, the preconditioners used in these works vary, and in many cases are notably suboptimal. A handful of works have already demonstrated the effectiveness of Geometric Multigrid (GMG) preconditioners in topology optimization. Here, we show that Algebraic Multigrid (AMG) preconditioners offer superior robustness with only a small overhead cost. The difference is most pronounced when the optimization develops fine-scale structural features or multiple solutions to the same linear system are needed. We thus argue that the expanded use of AMG preconditioners in topology optimization will be essential for the optimization of more complex criteria in large-scale 3D domains.
Stochastic Galerkin finite element method (SGFEM) provides an efficient alternative to traditional sampling methods for the numerical solution of linear elliptic partial differential equations with parametric or random inputs. However, computing stochastic Galerkin approximations for a given problem requires the solution of large coupled systems of linear equations. Therefore, an effective and bespoke iterative solver is a key ingredient of any SGFEM implementation. In this paper, we analyze a class of truncation preconditioners for SGFEM. Extending the idea of the mean-based preconditioner, these preconditioners capture additional significant components of the stochastic Galerkin matrix. Focusing on the parametric diffusion equation as a model problem and assuming affine-parametric representation of the diffusion coefficient, we perform spectral analysis of the preconditioned matrices and establish optimality of truncation preconditioners with respect to SGFEM discretization parameters. Furthermore, we report the results of numerical experiments for model diffusion problems with affine and non-affine parametric representations of the coefficient. In particular, we look at the efficiency of the solver (in terms of iteration counts for solving the underlying linear systems) and compare truncation preconditioners with other existing preconditioners for stochastic Galerkin matrices, such as the mean-based and the Kronecker product ones.