No Arabic abstract
We present the results of a monitoring campaign using the KAT-7 and HartRAO 26m telescopes, of hydroxyl, methanol and water vapour masers associated with the high-mass star forming region G9.62+0.20E. Periodic flaring of the main line hydroxyl masers were found, similar to that seen in the 6.7 and 12.2 GHz methanol masers. The 1667 MHz flares are characterized by a rapid decrease in flux density which is coincident with the start of the 12.2 GHz methanol maser flare. The decrease in the OH maser flux density is followed by a slow increase till a maximum is reached after which the maser decays to its pre-flare level. A possible interpretation of the rapid decrease in the maser flux density is presented. Considering the projected separation between the periodic methanol and OH masers, we conclude that the periodic 12.2 methanol masing region is located about 1600 AU deeper into the molecular envelope compared to the location of the periodic OH masers. A single water maser flare was also detected which seems not to be associated with the same event that gives rise to the periodic methanol and OH maser flares.
We present the light curves of the 6.7 and 12.2 GHz methanol masers in the star forming region G9.62+0.20E for a time span of more than 2600 days. The earlier reported period of 244 days is confirmed. The results of monitoring the 107 GHz methanol maser for two flares are also presented. The results show that flaring occurs in all three masing transitions. It is shown that the average flare profiles of the three masing transitions are similar. The 12.2 GHz masers are the most variable of the three masers with the largest relative amplitude having a value of 2.4. The flux densities for the different masing transitions are found to return to the same level during the low phase of the masers, suggesting that the source of the periodic flaring is situated outside the masing region, and that the physical conditions in the masing region are relatively stable. On the basis of the shape of the light curve we excluded stellar pulsations as the underlying mechanism for the periodicity. It is argued that a colliding wind binary can account for the observed periodicity and provide a mechanism to qualitatively explain periodicity in the seed photon flux and/or the pumping radiation field. It is also argued that the dust cooling time is too short to explain the decay time of about 100 days of the maser flare. A further analysis has shown that for the intervals from days 48 to 66 and from days 67 to 135 the decay of the maser light curve can be interpreted as due to the recombination of a thermal hydrogen plasma with densities of approximately $1.6 times 10^6 mathrm{cm^{-3}}$ and $6.0 times 10^5 mathrm{cm^{-3}}$ respectively.
A number of mechanisms to understand the periodic class II methanol masers associated with some high-mass star forming regions have been proposed in the past. Two recent proposals, ie. by Parfenov &Sobolev (2014) and Sanna et al. (2015) have been presented in order to explain the periodic masers in sources with light curves similar to the methanol masers in G9.62+0.20E. We evaluate to what extent the proposals and models presented by these authors can explain the light curve of the methanol masers in G9.62+0.20E. It is argued that neither of the proposed mechanisms can reproduce the light curves of the methanol masers in G9.62+0.20E.
As a product of the maser monitoring program with the 26m telescope of the Hartebeesthoek Radio Astronomy Observatory (HartRAO), we present an unprecedented, contemporaneous flaring event of 10 maser transitions in hydroxyl, methanol, and water that began in 2015 January in the massive star-forming region NGC6334I in the velocity range -10 to -2 km/s. The 6.7 GHz methanol and 22.2 GHz water masers began flaring within 22 days of each other, while the 12.2 GHz methanol and 1665 MHz hydroxyl masers flared 80 and 113 days later respectively. The 1665 MHz, 6.7 GHz, and 22.2 GHz masers have all remained in their flared state for nearly 3 years. The brightest flaring components increased by factors of 66, 21, 26, and 20 in the 12.2 and 6.7 GHz methanol, 1665 MHz hydroxyl and 22.2 GHz water maser transitions respectively; some weaker components increased by up to a factor of 145. We also report new maser emission in the 1720, 6031, and 6035 MHz OH lines and the 23.1 GHz methanol line, along with the detection of only the fifth 4660 MHz OH maser. We note the correlation of this event with the extraordinary (sub)millimeter continuum outburst from the massive protostellar system NGC6334I-MM1 and discuss the implications of the observed time lags between different maser velocity components on the nature of the outburst. Finally, we identify two earlier epoch maser flaring events likely associated with this object, which suggest a recurring accretive phenomenon that generates powerful radiative outbursts.
Methanol and water vapour masers are signposts of early stages of high-mass star formation but it is generally thought that due to different excitation processes they probe distinct parts of stellar environments. Here we present observations of the intermediate-mass young stellar object G107.298+5.639, revealing for the first time that 34.4 d flares of the 6.7 GHz methanol maser emission alternate with flares of individual features of the 22 GHz water maser. High angular resolution data reveal that a few components of both maser species showing periodic behaviour coincide in position and velocity and all the periodic water maser components appear in the methanol maser region of size of 360 au. The maser flares could be caused by variations in the infrared radiation field induced by cyclic accretion instabilities in a circumstellar or protobinary disc. The observations do not support either the stellar pulsations or the seed photon flux variations as the underlying mechanisms of the periodicity in the source.
We report on the measurement of the trigonometric parallaxes of 1612 MHz hydroxyl masers around two asymptotic giant branch stars, WX Psc and OH138.0+7.2, using the NRAO Very Long Baseline Array with in-beam phase referencing calibration. We obtained a 3-sigma upper limit of <=5.3 mas on the parallax of WX Psc, corresponding to a lower limit distance estimate of >~190 pc. The obtained parallax of OH138.0+7.2 is 0.52+/-0.09 mas (+/-18%), corresponding to a distance of 1.9(+0.4,-0.3) kpc, making this the first hydroxyl maser parallax below one milliarcsecond. We also introduce a new method of error analysis for detecting systematic errors in the astrometry. Finally, we compare our trigonometric distances to published phase-lag distances toward these stars and find a good agreement between the two methods.