Do you want to publish a course? Click here

Self-consistent bulge/disk/halo galaxy dynamical modeling using integral field kinematics

547   0   0.0 ( 0 )
 Added by Dan Taranu
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a method for modeling disk galaxies designed to take full advantage of data from integral field spectroscopy (IFS). The method fits equilibrium models to simultaneously reproduce the surface brightness, rotation and velocity dispersion profiles of a galaxy. The models are fully self-consistent 6D distribution functions for a galaxy with a Sersic-profile stellar bulge, exponential disk and parametric dark matter halo, generated by an updated version of GalactICS. By creating realistic flux-weighted maps of the kinematic moments (flux, mean velocity and dispersion), we simultaneously fit photometric and spectroscopic data using both maximum-likelihood and Bayesian (MCMC) techniques. We apply the method to a GAMA spiral galaxy (G79635) with kinematics from the SAMI Galaxy Survey and deep $g$- and $r$-band photometry from the VST-KiDS survey, comparing parameter constraints with those from traditional 2D bulge-disk decomposition. Our method returns broadly consistent results for shared parameters, while constraining the mass-to-light ratios of stellar components and reproducing the HI-inferred circular velocity well beyond the limits of the SAMI data. While the method is tailored for fitting integral field kinematic data, it can use other dynamical constraints like central fibre dispersions and HI circular velocities, and is well-suited for modelling galaxies with a combination of deep imaging and HI and/or optical spectra (resolved or otherwise). Our implementation (MagRite) is computationally efficient and can generate well-resolved models and kinematic maps in under a minute on modern processors.

rate research

Read More

84 - G. Bosch , R. Amorin (2 2019
Integral Field Spectroscopy (IFS) is well known for providing detailed insight of extended sources thanks to the possibility of handling space resolved spectroscopic information. Simple and straightforward analysis such as single line fitting yield interesting results, although it might miss a more complete picture in many cases. Violent star forming regions, such as starburst galaxies, display very complex emission line profiles due to multiple kinematic components superposed in the line of sight. We perform a spatially resolved kinematical study of a single Green Pea (GP) galaxy, SDSSJ083843.63+385350.5, using a new method for analyzing Integral Field Unit (IFU) observations of emission line spectra. The method considers the presence of multiple components in the emission-line profiles and makes use of a statistical indicator to determine the meaningful number of components to fit the observed profiles. We are able to identify three distinct kinematic features throughout the field and discuss their link with a rotating component, a strong outflow and a turbulent mixing layer. We also derive an updated star formation rate for ourobj and discuss the link between the observed signatures of a large scale outflow and of the Lyman continuum (LyC) leakage detected in GP galaxies.
We present an integral field study of the internal structure, kinematics and stellar population of the almost edge-on, intermediate luminosity ($L_ {*}$) elliptical galaxy NGC 4697. We build extended 2-dimensional (2D) maps of the stellar kinematics and line-strengths of the galaxy up to $sim 0.7 $ effective radii (R$_{eff}$) using a mosaic of 8 VIMOS (VIsible Multi-Objects Spectrograph on the VLT) integral-field unit pointings. We find clear evidence for a rotation-supported structure along the major axis from the 2D kinematical maps, confirming the previous classification of this system as a `fast-rotator. We study the correlations between the third and fourth Gauss-Hermite moments of the line-of-sight velocity distribution (LOSVD) $h_3$ and $h_4$ with the rotation parameter ($V/sigma$), and compare our findings to hydrodynamical simulations. We find remarkable similarities to predictions from gas-rich mergers. Based on photometry, we perform a bulge/disk decomposition and study the stellar population properties of the two components. The bulge and the disk show different stellar populations, with the stars in the bulge being older (age$_{rm bulge}=13.5^{+1.4}_{-1.4}$ Gyr, age$_{rm disk}=10.5^{+1.6}_{-2.0}$Gyr) and more metal-poor ($mathrm{[M/H]_{bulge}} = -0.17^{+0.12}_{-0.1}$, $mathrm{[M/H]_{disk}}=-0.03^{+0.02}_{-0.1}$). The evidence of a later-formed, more metal-rich disk embedded in an older, more metal-poor bulge, together with the LOSVD structure, supports a mass assembly scenario dominated by gas-rich minor mergers and possibly with a late gas-rich major merger that left a previously rapidly rotating system unchanged. The bulge and the disk do not show signs of different stellar Initial Mass Function slopes, and both match well with a Milky Way-like IMF.
We explore the kinematics (both the radial velocity and the proper motion) of the vertical X-shaped feature in the Milky Way with an N-body bar/bulge model. From the solar perspective, the distance distribution of particles is double-peaked in fields passing through the X-shape. The separation and amplitude ratio between the two peaks qualitatively match the observed trends towards the Galactic bulge. We confirm clear signatures of cylindrical rotation in the pattern of mean radial velocity across the bar/bulge region. We also find possible imprints of coherent orbital motion inside the bar structure in the radial velocity distribution along l=0 degree, where the near and far sides of the bar/bulge show excesses of approaching and receding particles. The coherent orbital motion is also reflected in the slight displacement of the zero-velocity-line in the mean radial velocity, and the displacement of the maximum/minimum in the mean longitudinal proper motion across the bulge region. We find some degree of anisotropy in the stellar velocity within the X-shape, but the underlying orbital family of the X-shape cannot be clearly distinguished. Two potential applications of the X-shape in previous literature are tested, i.e., bulge rotation and Galactic center measurements. We find that the proper motion difference between the two sides of the X-shape can be used to estimate the mean azimuthal streaming motion of the bulge, but not the pattern speed of the bar. We also demonstrate that the Galactic center can be located with the X-shape, but the accuracy depends on the fitting scheme, the number of fields, and their latitudinal coverage.
We have completed a new fiber array, SparsePak, optimized for low-surface-brightness studies of extended sources on the WIYN telescope. We are now using this array as a measuring engine of velocity and velocity-dispersion fields of stars and ionized gas in disk galaxies from high to low surface-brightness. Here we present commissioning data on the velocity ellipsoids, surface densities and mass-to-light ratios in two blue, high surface-brightness, yet small disks. If our preliminary results survive further observation and more sophisticated analysis, then NGC 3949 has sigma_z/sigma_R >> 1, implying strong vertical heating, while NGC 3982s disk is substantially sub-maximal. These galaxies are strikingly unlike the Milky Way, and yet would be seen more easily at high redshift.
174 - Lawrence M. Widrow , 2003
We present a suite of semi-analytic disk-bulge-halo models for the Andromeda galaxy (M31) which satisfy three fundamental conditions: (1) internal self-consistency; (2) consistency with observational data; and (3) stability of the disk against the formation of a central bar. The models are chosen from a set first constructed by Kuijken and Dubinski. We develop an algorithm to search the parameter space for this set in order to best match observations of the M31 rotation curve, inner velocity dispersion profile, and surface brightness profile. Models are obtained for a large range of bulge and disk masses; we find that the disk mass must be of order 8 * 10^10 M_sun and that the preferred value for the bulge mass is 2.5 * 10^10 M_sun. N-body simulations are carried out to test the stability of our models against the formation of a bar within the disk. We also calculate the baryon fraction and halo concentration parameter for a subset of our models and show that the results are consistent with the predictions from cosmological theories of structure formation. In addition, we describe how gravitational microlensing surveys and dynamical studies of globular clusters and satellites can further constrain the models.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا