No Arabic abstract
We present the far-ultraviolet (FUV) fluorescent molecular hydrogen (H_2) emission map of the Milky Way Galaxy obtained with FIMS/SPEAR covering ~76% of the sky. The extinction-corrected intensity of the fluorescent H_2 emission has a strong linear correlation with the well-known tracers of the cold interstellar medium (ISM), including color excess E(B-V), neutral hydrogen column density N(H I), and H_alpha emission. The all-sky H_2 column density map was also obtained using a simple photodissociation region model and interstellar radiation fields derived from UV star catalogs. We estimated the fraction of H2 (f_H2) and the gas-to-dust ratio (GDR) of the diffuse ISM. The f_H2 gradually increases from <1% at optically thin regions where E(B-V) < 0.1 to ~50% for E(B-V) = 3. The estimated GDR is ~5.1 x 10^21 atoms cm^-2 mag^-1, in agreement with the standard value of 5.8 x 10^21 atoms cm^-2 mag^-1.
We present all-sky maps of two major FUV cooling lines, C IV and O VI, of highly ionized gas to investigate the nature of the transition-temperature gas. From the extinction-corrected line intensities of C IV and O VI, we calculated the gas temperature and the emission measure of the transition-temperature gas assuming isothermal plasma in the collisional ionization equilibrium. The gas temperature was found to be more or less uniform throughout the Galaxy with a value of (1.89 $pm$ 0.06) $times$ $10^5$ K. The emission measure of the transition-temperature gas is described well by a disk-like model in which the scale height of the electron density is $z_0=6_{-2}^{+3}$ kpc. The total mass of the transition-temperature gas is estimated to be approximately $6.4_{-2.8}^{+5.2}times10^9 M_{bigodot}$. We also calculated the volume-filling fraction of the transition-temperature gas, which was estimated to be $f=0.26pm0.09$, and varies from $fsim0.37$ in the inner Galaxy to $fsim0.18$ in the outer Galaxy. The spatial distribution of C IV and O VI cannot be explained by a simple supernova remnant model or a three-phase model. The combined effects of supernova remnants and turbulent mixing layers can explain the intensity ratio of C IV and O VI. Thermal conduction front models and high-velocity cloud models are also consistent with our observation.
There is evidence in 21cm HI emission for voids several kpc in size centered approximately on the Galactic centre, both above and below the Galactic plane. These appear to map the boundaries of the Galactic nuclear wind. An analysis of HI at the tangent points, where the distance to the gas can be estimated with reasonable accuracy, shows a sharp transition at Galactic radii $Rlesssim 2.4$ kpc from the extended neutral gas layer characteristic of much of the Galactic disk, to a thin Gaussian layer with FWHM $sim 125$ pc. An anti-correlation between HI and $gamma$-ray emission at latitudes $10^{circ} leq |b| leq 20^{circ}$ suggests that the boundary of the extended HI layer marks the walls of the Fermi Bubbles. With HI we are able to trace the edges of the voids from $|z| > 2$ kpc down to $zapprox0$, where they have a radius $sim 2$ kpc. The extended HI layer likely results from star formation in the disk, which is limited largely to $R gtrsim 3$ kpc, so the wind may be expanding into an area of relatively little HI. Because the HI kinematics can discriminate between gas in the Galactic center and foreground material, 21cm HI emission may be the best probe of the extent of the nuclear wind near the Galactic plane.
We report results from a FUSE survey of interstellar molecular hydrogen (H2) in the Galactic disk toward 139 O-type and early B-type stars at Galactic latitudes $|b| < 10^{circ}$, with updated photometric and parallax distances. The H2 absorption is measured using the far-ultraviolet Lyman and Werner bands, including strong R(0), R(1), and P(1) lines from rotational levels $J = 0$ and $J = 1$ and excited states up to $J = 5$ (sometimes $J = 6$ and 7). For each sight line, we report column densities $N_{H2}$, $N_{HI}$, $N(J)$, $N_H = N_{HI} + 2N_{H2}$, and molecular fraction, $f_{H2} = 2N_{H2}/N_H$. Our survey extends the 1977 Copernicus H2 survey up to $N_H sim 5times10^{21}$ cm$^{-2}$. The lowest rotational states have mean excitation temperatures and rms dispersions, $T_{01} = 88pm 20$ K and $T_{02} = 77pm18$ K, suggesting that J = 0,1,2 are coupled to the gas kinetic temperature. Populations of higher-J states exhibit mean excitation temperatures, $T_{24} = 237pm91$ K and $T_{35} = 304pm108$ K, produced primarily by UV radiative pumping. Correlations of $f_{H2}$ with E(B-V) and N_H show a transition to $f_{H2} geq 0.1$ at $N_ H geq 10^{21}$ cm$^{-2}$ and $E(B-V) > 0.2$, interpreted with an analytic model of H2 formation-dissociation equilibrium and attenuation of the far-UV radiation field by self-shielding and dust opacity. Results of this disk survey are compared to previous FUSE studies of H2 in translucent clouds, at high Galactic latitudes, and in the Magellanic Clouds. Using updated distances to the target stars, we find average sight-line values $langle f_{H2} rangle geq 0.20$ and $langle N_H/E(B-V) rangle = (6.07pm1.01)times10^{21}$ cm$^{-2}$ mag$^{-1}$.
We present a three-dimensional map of interstellar dust reddening, covering three-quarters of the sky out to a distance of several kiloparsecs, based on Pan-STARRS 1 and 2MASS photometry. The map reveals a wealth of detailed structure, from filaments to large cloud complexes. The map has a hybrid angular resolution, with most of the map at an angular resolution of 3.4 to 13.7, and a maximum distance resolution of ~25%. The three-dimensional distribution of dust is determined in a fully probabilistic framework, yielding the uncertainty in the reddening distribution along each line of sight, as well as stellar distances, reddenings and classifications for 800 million stars detected by Pan-STARRS 1. We demonstrate the consistency of our reddening estimates with those of two-dimensional emission-based maps of dust reddening. In particular, we find agreement with the Planck 353 GHz optical depth-based reddening map to within 0.05 mag in E(B-V) to a depth of 0.5 mag, and explore systematics at reddenings less than E(B-V) ~ 0.08 mag. We validate our per-star reddening estimates by comparison with reddening estimates for stars with both SDSS photometry and SEGUE spectral classifications, finding per-star agreement to within 0.1 mag out to a stellar E(B-V) of 1 mag. We compare our map to two existing three-dimensional dust maps, by Marshall et al. (2006) and Lallement et al. (2013), demonstrating our finer angular resolution, and better distance resolution compared to the former within ~3 kpc. The map can be queried or downloaded at http://argonaut.skymaps.info. We expect the three-dimensional reddening map presented here to find a wide range of uses, among them correcting for reddening and extinction for objects embedded in the plane of the Galaxy, studies of Galactic structure, calibration of future emission-based dust maps and determining distances to objects of known reddening.
Throughout the Milky Way, molecular clouds typically appear filamentary, and mounting evidence indicates that this morphology plays an important role in star formation. What is not known is to what extent the dense filaments most closely associated with star formation are connected to the surrounding diffuse clouds up to arbitrarily large scales. How are these cradles of star formation linked to the Milky Ways spiral structure? Using archival Galactic plane survey data, we have used multiple datasets in search of large-scale, velocity-coherent filaments in the Galactic plane. In this paper, we present our methods employed to identify coherent filamentary structures first in extinction and confirmed using Galactic Ring Survey data. We present a sample of seven Giant Molecular Filaments (GMFs) that have lengths of order $sim$100 pc, total masses of 10$^4$ - 10$^5$ M$_{odot}$, and exhibit velocity coherence over their full length. The GMFs we study appear to be inter-arm clouds and may be the Milky Way analogues to spurs observed in nearby spiral galaxies. We find that between 2 and 12% of the total mass (above $sim$10$^{20}$ cm$^{-2}$) is dense (above 10$^{22}$ cm$^{-2}$), where filaments near spiral arms in the Galactic midplane tend to have higher dense gas mass fractions than those further from the arms.