Do you want to publish a course? Click here

Image Fusion With Cosparse Analysis Operator

175   0   0.0 ( 0 )
 Added by Sergiy Vorobyov A.
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

The paper addresses the image fusion problem, where multiple images captured with different focus distances are to be combined into a higher quality all-in-focus image. Most current approaches for image fusion strongly rely on the unrealistic noise-free assumption used during the image acquisition, and then yield limited robustness in fusion processing. In our approach, we formulate the multi-focus image fusion problem in terms of an analysis sparse model, and simultaneously perform the restoration and fusion of multi-focus images. Based on this model, we propose an analysis operator learning, and define a novel fusion function to generate an all-in-focus image. Experimental evaluations confirm the effectiveness of the proposed fusion approach both visually and quantitatively, and show that our approach outperforms state-of-the-art fusion methods.



rate research

Read More

The inclusion of spatial information into spectral classifiers for fine-resolution hyperspectral imagery has led to significant improvements in terms of classification performance. The task of spectral-spatial hyperspectral image classification has remained challenging because of high intraclass spectrum variability and low interclass spectral variability. This fact has made the extraction of spatial information highly active. In this work, a novel hyperspectral image classification framework using the fusion of dual spatial information is proposed, in which the dual spatial information is built by both exploiting pre-processing feature extraction and post-processing spatial optimization. In the feature extraction stage, an adaptive texture smoothing method is proposed to construct the structural profile (SP), which makes it possible to precisely extract discriminative features from hyperspectral images. The SP extraction method is used here for the first time in the remote sensing community. Then, the extracted SP is fed into a spectral classifier. In the spatial optimization stage, a pixel-level classifier is used to obtain the class probability followed by an extended random walker-based spatial optimization technique. Finally, a decision fusion rule is utilized to fuse the class probabilities obtained by the two different stages. Experiments performed on three data sets from different scenes illustrate that the proposed method can outperform other state-of-the-art classification techniques. In addition, the proposed feature extraction method, i.e., SP, can effectively improve the discrimination between different land covers.
We propose a scheme for multi-layer representation of images. The problem is first treated from an information-theoretic viewpoint where we analyze the behavior of different sources of information under a multi-layer data compression framework and compare it with a single-stage (shallow) structure. We then consider the image data as the source of information and link the proposed representation scheme to the problem of multi-layer dictionary learning for visual data. For the current work we focus on the problem of image compression for a special class of images where we report a considerable performance boost in terms of PSNR at high compression ratios in comparison with the JPEG2000 codec.
Image super-resolution is a process to enhance image resolution. It is widely used in medical imaging, satellite imaging, target recognition, etc. In this paper, we conduct continuous modeling and assume that the unknown image intensity function is defined on a continuous domain and belongs to a space with a redundant basis. We propose a new iterative model for single image super-resolution based on an observation: an image is consisted of smooth components and non-smooth components, and we use two classes of approximated Heaviside functions (AHFs) to represent them respectively. Due to sparsity of the non-smooth components, a $L_{1}$ model is employed. In addition, we apply the proposed iterative model to image patches to reduce computation and storage. Comparisons with some existing competitive methods show the effectiveness of the proposed method.
In image fusion, images obtained from different sensors are fused to generate a single image with enhanced information. In recent years, state-of-the-art methods have adopted Convolution Neural Networks (CNNs) to encode meaningful features for image fusion. Specifically, CNN-based methods perform image fusion by fusing local features. However, they do not consider long-range dependencies that are present in the image. Transformer-based models are designed to overcome this by modeling the long-range dependencies with the help of self-attention mechanism. This motivates us to propose a novel Image Fusion Transformer (IFT) where we develop a transformer-based multi-scale fusion strategy that attends to both local and long-range information (or global context). The proposed method follows a two-stage training approach. In the first stage, we train an auto-encoder to extract deep features at multiple scales. In the second stage, multi-scale features are fused using a Spatio-Transformer (ST) fusion strategy. The ST fusion blocks are comprised of a CNN and a transformer branch which capture local and long-range features, respectively. Extensive experiments on multiple benchmark datasets show that the proposed method performs better than many competitive fusion algorithms. Furthermore, we show the effectiveness of the proposed ST fusion strategy with an ablation analysis. The source code is available at: https://github.com/Vibashan/Image-Fusion-Transformer.
Robust road segmentation is a key challenge in self-driving research. Though many image-based methods have been studied and high performances in dataset evaluations have been reported, developing robust and reliable road segmentation is still a major challenge. Data fusion across different sensors to improve the performance of road segmentation is widely considered an important and irreplaceable solution. In this paper, we propose a novel structure to fuse image and LiDAR point cloud in an end-to-end semantic segmentation network, in which the fusion is performed at decoder stage instead of at, more commonly, encoder stage. During fusion, we improve the multi-scale LiDAR map generation to increase the precision of the multi-scale LiDAR map by introducing pyramid projection method. Additionally, we adapted the multi-path refinement network with our fusion strategy and improve the road prediction compared with transpose convolution with skip layers. Our approach has been tested on KITTI ROAD dataset and has competitive performance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا