It is proved the existence of large algebraic structures break --including large vector subspaces or infinitely generated free algebras-- inside, among others, the family of Lebesgue measurable functions that are surjective in a strong sense, the family of nonconstant differentiable real functions vanishing on dense sets, and the family of non-continuous separately continuous real functions. Lineability in special spaces of sequences is also investigated. Some of our findings complete or extend a number of results by several authors.