Family of Bell-like inequalities as device-independent witnesses for entanglement depth


Abstract in English

We present a simple family of Bell inequalities applicable to a scenario involving arbitrarily many parties, each of which performs two binary-outcome measurements. We show that these inequalities are members of the complete set of full-correlation Bell inequalities discovered by Werner-Wolf-Zukowski-Brukner. For scenarios involving a small number of parties, we further verify that these inequalities are facet-defining for the convex set of Bell-local correlations. Moreover, we show that the amount of quantum violation of these inequalities naturally manifests the extent to which the underlying system is genuinely many-body entangled. In other words, our Bell inequalities, when supplemented with the appropriate quantum bounds, naturally serve as device-independent witnesses for entanglement depth, allowing one to certify genuine k-partite entanglement in an arbitrary $nge k$-partite scenario without relying on any assumption about the measurements being performed, nor the dimension of the underlying physical system. A brief comparison is made between our witnesses and those based on some other Bell inequalities, as well as the quantum Fisher information. A family of witnesses for genuine k-partite nonlocality applicable to an arbitrary $nge k$-partite scenario based on our Bell inequalities is also presented.

Download