Do you want to publish a course? Click here

Local ISM 3D distribution and soft X-ray background: Inferences on nearby hot gas and the North Polar Spur

234   0   0.0 ( 0 )
 Added by Rosine Lallement
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

3D maps of the ISM can be used to locate not only IS clouds, but also IS bubbles between the clouds that are blown by stellar winds and supernovae. We compare our 3D maps of the IS dust to the ROSAT diffuse X-ray background maps. In the Plane, there is a good correspondence between the locations and extents of the mapped nearby cavities and the 0.25 keV background emission distribution, showing that most of these nearby cavities contribute to this soft X-ray emission. Assuming a constant dust to gas ratio and homogeneous 1MK hot gas filling the cavities, we modeled in a simple way the 0.25 keV surface brightness along the Galactic plane as seen from the Sun, taking into account the absorption by the mapped clouds. The data-model comparison favors the existence of hot gas in the Local Bubble (LB). The average mean pressure in the local cavities is found to be on the order of about 10,000 cm-3K, in agreement with previous studies. The model overestimates the emission from the huge cavities in the 3rd quadrant. Using CaII absorption data, we show that the dust to CaII ratio is very small in this region, implying the presence of a large quantity of lower temperature (non-X-ray emitting) ionized gas, explaining at least part of the discrepancy. In the meridian plane, the two main brightness enhancements coincide well with the chimneys connecting the LB to the halo. No nearby cavity is found towards the bright North Polar Spur (NPS) at high latitude. We searched in the maps for the source regions of the 0.75 keV enhancements in the 4th and 1st quadrants. Tunnels and cavities are found to coincide with the main bright areas, however no tunnel nor cavity is found to match the low-latitude, brightest part of the NPS. In addition, the comparison between the maps and published spectra do not favor the nearby cavities located within about 200pc as potential source regions for the NPS.



rate research

Read More

Most models identify the X-ray bright North Polar Spur (NPS) with a hot interstellar (IS) bubble in the Sco-Cen star-forming region at $simeq$130 pc. An opposite view considers the NPS as a distant structure associated with Galactic nuclear outflows. Constraints on the NPS distance can be obtained by comparing the foreground IS gas column inferred from X-ray absorption to the distribution of gas and dust along the line of sight. Absorbing columns towards shadowing molecular clouds simultaneously constrain the CO-H$_{2}$ conversion factor. We derived the columns of X-ray absorbing matter NH(abs) from spectral fitting of dedicated XMM-Newton observations towards the NPS southern terminus (l=29{deg}, b=+5 to +11{deg}). The IS matter distribution was obtained from absorption lines in stellar spectra, 3D dust maps and emission data, including high spatial resolution CO measurements recorded for this purpose. NH(abs) varies from $simeq$ 4.3 to $simeq$ 1.3 x 10$^{21}$ cm$^{-2}$ along the 19 fields. Relationships between X-ray brightness, absorbing column and hardness ratio demonstrate a brightness decrease with latitude governed by increasing absorption. The comparison with absorption data, local and large-scale dust maps rules out a NPS near side closer than 300 pc. The correlation between NH(abs) and the reddening increases with the sightline length from 300 pc to 4 kpc and is the tightest with Planck $tau_{353}$-based reddening, suggesting a much larger distance. N(H)/E(B-V) $simeq$ 4.1 x 10$^{21}$ cm$^{-2}$ mag$^{-1}$. NH(abs) absolute values are compatible with HI-CO clouds at -5 $leq$ V(LSR) $leq$ +25 to +45 km s$^{-1}$ and a NPS potentially far beyond the Local Arm. A molecular cloud shadow at b=+9deg constrains X$_{CO}$ to $leq$ 1.0 x 10$^{20}$ cm$^{-2}$ K$^{-1}$ km$^{-1}$ s. The average X$_{CO}$ is $leq$ 0.75 x 10$^{20}$ cm$^{-2}$ K$^{-1}$ km$^{-1}$ s.
The North Polar Spur (NPS) is one of the largest structures observed in the Milky Way in both the radio and soft x-rays. While several predictions have been made regarding the origin of the NPS, modelling the structure is difficult without precise distance constraints. In this paper, we determine accurate distances to the southern terminus of the NPS and toward latitudes ranging up to 55$^{circ}$. First, we fit for the distance and extinction to stars toward the NPS using optical and near-infrared photometry and Gaia DR2 astrometry. We model these per-star distance-extinction estimates as being caused by dust screens at unknown distances, which we fit for using a nested sampling algorithm. We then compare the extinction to the Spur derived from our 3D dust modelling with integrated independent measures from XMM-Newton X-ray absorption and HI column density measures. We find that we can account for nearly 100% of the total column density of the NPS as lying within 140 pc for latitudes $>26^{circ}$ and within 700 pc for latitudes $< 11^{circ}$. Based on the results, we conclude that the NPS is not associated with the Galactic Centre or the Fermi bubbles. Instead, it is likely associated, especially at higher latitudes, with the Sco-Cen association.
The origin of North Polar Spur (NPS) and Loop-I has been debated over almost half a century and is still unresolved. Most of the confusion is caused by the absence of any prominent counterparts of these structures in the southern Galactic hemisphere (SGH). This has also led to doubts over the claimed connection between the NPS and Fermi Bubbles (FBs). I show in this paper, that such asymmetries of NPS and Loop-I in both X-rays and $gamma$-rays can be easily produced if the circumgalactic medium (CGM) density in the southern hemisphere is only smaller by $approx 20%$ than the northern counterpart in case of a star formation driven wind scenario. The required mechanical luminosity, $mathcal{L} approx 4-5times 10^{40} $ erg s$^{-1}$ (reduces to $approx 0.3$ M$_odot$ yr$^{-1}$ including the non-thermal pressure) and the age of the FBs, $t_{rm age} approx 28$ Myr, are consistent with previous estimations in case of a star formation driven wind scenario. One of the main reasons for the asymmetry is the projection effects at the Solar location. Such a proposition is also consistent with the fact that the southern FB is $approx 5^circ$ bigger than the northern one. The results, therefore, indicate towards a possibility for a common origin of the NPS, Loop-I and FBs from the Galactic centre (GC). I also estimate the average sky brightness in X-ray towards the south Galactic pole and North Galactic pole in the ROSAT-R67 band and find that the error in average brightness is far too large to have any estimation of the deficiency in the southern hemisphere.
RS Cae is the third target in our series of XMM-Newton observations of soft X-ray-dominated polars. Our observational campaign aims to better understand and describe the multiwavelength data, the physical properties of the system components, and the short- and long-term behavior of the component fluxes in RS Cae. We employ stellar atmosphere, stratified accretion-column, and widely used X-ray spectral models. We fit the XMM-Newton spectra, model the multiband light curves, and opt for a mostly consistent description of the spectral energy distribution. Results. Our XMM-Newton data of RS Cae are clearly dominated by soft X-ray emission. The X-ray light curves are shaped by emission from the main accretion region, which is visible over the whole orbital cycle, interrupted only by a stream eclipse. The optical light curves are formed by cyclotron and stream emission. The XMM-Newton X-ray spectra comprise a black-body-like and a plasma component at mean temperatures of 36eV and 7keV. The spectral fits give evidence of a partially absorbing and a reflection component. Multitemperature models, covering a broader temperature range in the X-ray emitting accretion regions, reproduce the spectra appropriately well. Including archival data, we describe the spectral energy distribution with a combination of models based on a consistent set of parameters and derive a lower limit estimate of the distance d > 750pc. Conclusions. The high bolometric soft-to-hard flux ratios and short-term variability of the (X-ray) light curves are characteristic of inhomogeneous accretion. RS Cae clearly belongs in the group of polars that show a very strong soft X-ray flux compared to their hard X-ray flux. The different black-body fluxes and similar hard X-ray and optical fluxes during the XMM-Newton and ROSAT observations show that soft and hard X-ray emission are not directly correlated.
The thermal Sunyaev-Zeldovich (SZ) effect and soft X-ray emission are routinely observed around massive galaxies and in galaxy groups and clusters. We study these observational diagnostics of galaxy haloes for a suite of cosmological `zoom-in simulations from the `Feedback In Realistic Environments project, which spans a large range in halo mass 10^10-10^13 Msun). We explore the effect of stellar feedback on the hot gas observables. The properties of our simulated groups, such as baryon fractions, SZ flux, and X-ray luminosities (L_X), are broadly consistent with existing observations, even though feedback from active galactic nuclei is not included. We make predictions for future observations of lower-mass objects for both SZ and diffuse X-ray measurements, finding that they are not just scaled-do
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا