The impact of hierarchy upon the values of neutrino mixing parameters


Abstract in English

A neutrino-oscillation analysis is performed of the more finely binned Super-K atmospheric, MINOS, and CHOOZ data in order to examine the impact of neutrino hierarchy in this data set upon the value of $theta_{13}$ and the deviation of $theta_{23}$ from maximal mixing. Exact oscillation probabilities are used, thus incorporating all powers of $theta_{13}$ and $epsilon :=theta_{23}-pi/4$. The extracted oscillation parameters are found to be dependent on the hierarchy, particularly for $theta_{13}$. We find at 90% CL are $Delta_{32} = 2.44^{+0.26}_{-0.20}$ and $2.48^{+0.25}_{-0.22}times 10^{-3} {rm eV}^2$, $epsilon=theta_{23}-pi/4=0.06^{+0.06}_{-0.16}$ and $0.06^{+0.08}_{-0.17}$, and $theta_{13}=-0.07^{+0.18}_{-0.11}$ and $-0.13^{+0.23}_{-0.16}$, for the normal and inverted hierarchy respectively. The inverted hierarchy is preferred at a statistically insignificant level of 0.3 $sigma$.

Download