No Arabic abstract
We have performed large-scale nucleosynthesis calculations within the high-entropy-wind (HEW) scenario of type II supernovae. The primary aim was to constrain the conditions for the production of the classical p-only isotopes of the light trans-Fe elements. We find, however, that for electron fractions in the range 0.458 $le$ Y$_e$ $le$ 0.478, sizeable abundances of p-, s- and r-process nuclei between $^{64}$Zn and $^{98}$Ru are coproduced in the HEW at low entropies (S $le$ 100) by a primary charged-particle process after an $alpha$-rich freezeout. With the above Y$_e$ -- S correlation, most of the predicted isotopic abundance ratios within a given element (e.g. $^{64}$Zn(p)/$^{70}$Zn(r) or $^{92}$Mo(p)/$^{94}$Mo(p)), as well as of neighboring elements (e.g. $^{70}$Ge(s+p)/$^{74}$Se(p) or $^{74}$Se(p)/$^{78}$Kr(p)) agree with the observed Solar-System ratios. Taking the Mo isotopic chain as a particularly challenging example, we show that our HEW model can account for the production of all 7 stable isotopes, from p-only $^{92}$Mo, via s-only $^{96}$Mo up to r-only $^{100}$Mo. Furthermore, our model is able to reproduce the isotopic composition of Mo in presolar SiC X-grains.}
While the high-entropy wind (HEW) of Type II supernovae remains one of the more promising sites for the rapid neutron-capture (r-) process, hydrodynamic simulations have yet to reproduce the astrophysical conditions under which the latter occurs. We have performed large-scale network calculations within an extended parameter range of the HEW, seeking to identify or to constrain the necessary conditions for a full reproduction of all r-process residuals N_{r,odot}=N_{odot}-N_{s,odot} by comparing the results with recent astronomical observations. A superposition of weighted entropy trajectories results in an excellent reproduction of the overall N_{r,odot}-pattern beyond Sn. For the lighter elements, from the Fe-group via Sr-Y-Zr to Ag, our HEW calculations indicate a transition from the need for clearly different sources (conditions/sites) to a possible co-production with r-process elements, provided that a range of entropies are contributing. This explains recent halo-star observations of a clear non-correlation of Zn and Ge and a weak correlation of Sr - Zr with heavier r-process elements. Moreover, new observational data on Ru and Pd seem to confirm also a partial correlation with Sr as well as the main r-process elements (e.g. Eu).
Aims: We study the production of dust in Type II-P supernova by coupling the gas-phase chemistry to the dust nucleation and condensation phases. We consider two supernova progenitor masses with homogeneous and clumpy ejecta to assess the chemical type and quantity of dust that forms. Grain size distributions are derived as a function of post-explosion time. Methods: The chemistry of the gas phase and the simultaneous formation of dust clusters are described by a chemical network. The formation of key species (CO, SiO) and dust clusters of silicates, alumina, silica, metal carbides and sulphides, pure metals, and amorphous carbon is considered. The master equations describing the chemistry of the nucleation phase are coupled to a dust condensation formalism based on Brownian coagulation. Results: Type II-P supernovae produce dust grains of various chemical compositions and size distributions as a function of time. The grain size distributions gain in complexity with time, are slewed towards large grains, and differ from the usual MRN power-law distribution used for interstellar dust. Gas density enhancements in the form of clumps strongly affect the dust chemical composition and the grain size distributions. Silicates and pure metallic grains are highly dependent on clumpiness. Specifically, clumpy ejecta produce grains over 0.1 micron, and the final dust mass reaches 0.14 Msun. Conversely, carbon and alumina dust masses are controlled by the mass yields of alumina and carbon in the zones where the dust is produced. Several dust components form in the ejecta and the total dust mass gradually builds up over a time span of 3 to 5 years post-outburst. This gradual growth provides a possible explanation for the discrepancy between the small dust masses formed at early post-explosion times and the high dust masses derived from recent observations of supernova remnants.
Long-lived radioactive nuclei play an important role as nucleo-cosmochronometers and as cosmic tracers of nucleosynthetic source activity. In particular nuclei in the actinide region like thorium, uranium, and plutonium can testify to the enrichment of an environment by the still enigmatic astrophysical sources that are responsible for the production of neutron-rich nuclei by the rapid neutron-capture process (r-process). Supernovae and merging neutron-star (NS) or NS-black hole binaries are considered as most likely sources of the r-nuclei. But arguments in favour of one or the other or both are indirect and make use of assumptions; they are based on theoretical models with remaining simplifications and shortcomings. An unambiguous observational determination of a production event is still missing. In order to facilitate searches in this direction, e.g. by looking for radioactive tracers in stellar envelopes, the interstellar medium or terrestrial reservoirs, we provide improved theoretical estimates and corresponding uncertainty ranges for the actinide production ($^{232}$Th, $^{235,236,238}$U, $^{237}$Np, $^{244}$Pu, and $^{247}$Cm) in neutrino-driven winds of core-collapse supernovae. Since state-of-the-art supernova models do not yield r-process viable conditions ---but still lack, for example, the effects of strong magnetic fields--- we base our investigation on a simple analytical, Newtonian, adiabatic and steady-state wind model and consider the superposition of a large number of contributing components, whose nucleosynthesis-relevant parameters (mass weight, entropy, expansion time scale, and neutron excess) are constrained by the assumption that the integrated wind nucleosynthesis closely reproduces the solar system distribution of r-process elements. We also test the influence of uncertain nuclear physics.
We study the formation of molecules and dust clusters in the ejecta of solar metallicity, Type II-P supernovae using a chemical kinetic approach. We follow the evolution of molecules and small dust cluster masses from day 100 to day 1500 after explosion. We consider stellar progenitors with initial mass of 12, 15, 19 and 25 Msun that explode as supernovae with stratified ejecta. The molecular precursors to dust grains comprise molecular chains, rings and small clusters of silica, silicates, metal oxides, sulphides and carbides, pure metals, and carbon, where the nucleation of silicate clusters is described by a two-step process of metal and oxygen addition. We study the impact of the 56Ni mass on the type and amount of synthesised dust. We predict that large masses of molecules including CO, SiO, SiS, O2, and SO form in the ejecta. We show that the discrepancy between the small dust masses detected at infrared wavelengths some 500 days post-explosion and the larger amounts of dust recently detected with Herschel in supernova remnants can be explained by the non-equilibrium chemistry linked to the formation of molecules and dust clusters in the ejected material. Dust gradually builds up from small (~10^{-5} Msun) to large masses (~5x 10^{-2} Msun) over a 5 yr period after explosion. Subsequent dust formation and/or growth is hampered by the shortage of chemical agents participating in the dust nucleation and the long time scale for accretion. The results highlight the dependence of the dust chemical composition and mass on the amount of 56Ni synthesised during the explosion. This dependence may partly explain the diversity of epochs at which dust forms in supernovae. More generally, our results indicate that type II-P supernovae are efficient but moderate dust producers with an upper limit on the mass of synthesised dust ranging from ~ 0.03 to 0.09 Msun.
We present a compilation of UBV RIz light curves of 51 type II supernovae discovered during the course of four different surveys during 1986 to 2003: the Cerro Tololo Supernova Survey, the Calan/Tololo Supernova Program (C&T), the Supernova Optical and Infrared Survey (SOIRS), and the Carnegie Type II Supernova Survey (CATS). The photometry is based on template-subtracted images to eliminate any potential host galaxy light contamination, and calibrated from foreground stars. This work presents these photometric data, studies the color evolution using different bands, and explores the relation between the magnitude at maximum brightness and the brightness decline parameter (s) from maximum light through the end of the recombination phase. This parameter is found to be shallower for redder bands and appears to have the best correlation in the B band. In addition, it also correlates with the plateau duration, being thus shorter (longer) for larger (smaller) s values.