Do you want to publish a course? Click here

Statistical multifragmentation features of midvelocity source in semiperipheral heavy-ion collisions

119   0   0.0 ( 0 )
 Added by Alessandro Olmi
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

Some characteristics of midvelocity emissions in semiperipheral heavy-ion collisions at Fermi energies are discussed in the framework of a multifragmenting scenario. We report on binary dissipative collisions of 93Nb + 93Nb at 38AMeV in which we measured an abundant emission of particles and fragments not originated from the usual evaporative decay of hot primary fragments. We checked the compatibility of these emissions with the multifragmentation of a source which forms in the overlap region. One can fairly well reproduce the data assuming a hot and dilute source, possibly more n-rich than the initial nuclei; the results appear to be insensitive to the source size.



rate research

Read More

Peripheral and semi-peripheral collisions have been studied in the system 93Nb+93Nb at 38 AMeV. The evaporative and midvelocity components of the light charged particle and intermediate mass fragment emissions have been carefully disentangled. In this way it was possible to obtain the average amount not only of charge and mass, but also of energy, pertaining to the midvelocity emission, as a function of an impact parameter estimator. This emission has a very important role in the overall balance of the reaction, as it accounts for a large fraction of the emitted mass and for more than half of the dissipated energy. As such, it may give precious clues on the microscopic mechanism of energy transport from the interaction zone toward the target and projectile remnants.
149 - Supriya Goyal 2011
Study of stability of nuclei, flow and multifragmentation in heavy-ion collisions.
We review progress in the study of antinuclei, starting from Diracs equation and the discovery of the positron in cosmic-ray events. The development of proton accelerators led to the discovery of antiprotons, followed by the first antideuterons, demonstrating that antinucleons bind into antinuclei. With the development of heavy-ion programs at the Brookhaven AGS and CERN SPS, it was demonstrated that central collisions of heavy nuclei offer a fertile ground for research and discoveries in the area of antinuclei. In this review, we emphasize recent observations at Brookhavens Relativistic Heavy Ion Collider and at CERNs Large Hadron Collider, namely, the antihypertriton and the antihelium-4, as well as measurements of the mass difference between light nuclei and antinuclei, and the interaction between antiprotons. Physics implications of the new observations and different production mechanisms are discussed. We also consider implications for related fields, such as hypernuclear physics and space-based cosmic-ray experiments.
Light charged particles emitted at about 90 deg in the frame of the projectile-like fragment in semi-peripheral collisions of 93Nb+93Nb at 38A MeV give evidence for the simultaneous occurrence of two different production mechanisms. This is demonstrated by differences in the kinetic energy spectra and in the isotopic composition of the particles. The emission with a softer kinetic energy spectrum and a low N/Z ratio for the hydrogen isotopes is attributed to an evaporation process. The harder emission, with a much higher N/Z ratio, can be attributed to a ``midvelocity process consisting of a non-isotropic emission, on a short time-scale, from the surface of the projectile-like fragment.
72 - R. Wada , T. Keutgen , K. Hagel 2003
The reaction systems, 64Zn + 58Ni, 64Zn + 92Mo, 64Zn + 197Au, at 26A, 35A and 47A MeV, have been studied both in experiments with a 4$pi$ detector array, NIMROD, and with Antisymmetrized Molecular Dynamics model calculations employing effective interactions corresponding to soft and stiff equations of state (EOS). Direct experimental observables, such as multiplicity distributions, charge distributions, energy spectra and velocity spectra, have been compared in detail with those of the calculations and a reasonable agreement is obtained. The velocity distributions of $alpha$ particles and fragments with Z >= 3 show distinct differences in calculations with the soft EOS and the stiff EOS. The velocity distributions of $alpha$ particle and Intermediate Mass Fragments (IMFs) are best described by the stiff EOS. Neither of the above direct observables nor the strength of the elliptic flow are sensitive to changes in the in-medium nucleon-nucleon (NN) cross sections. A detailed analysis of the central collision events calculated with the stiff EOS revealed that multifragmentation with cold fragment emission is a common feature predicted for all reactions studied here. A possible multifragmentation scenario is presented; after the preequilibrium emission ceases in the composite system, cold light fragments are formed in a hotter gas of nucleons and stay cold until the composite system underdoes multifragmentation. For reaction with 197Au at 47A MeV a significant radial expansion takes place. For reactions with 58Ni and 92Mo at 47A MeV semi-transparency becomes prominent. The differing reaction dynamics drastically change the kinematic characteristics of emitted fragments. This scenario gives consistent explanations for many existing experimental results in the Fermi energy domain.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا