Do you want to publish a course? Click here

Acoustic oscillations in the field-free, gravitationally stratified Acoustic oscillations in the field-free, gravitationally stratified cavities under solar bipolar magnetic canopies

255   0   0.0 ( 0 )
 Added by David Kuridze
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The main goal is to study the dynamics of the gravitationally stratified, field-free cavities in the solar atmosphere, located under small-scale, cylindrical magnetic canopies, in response to explosive events in the lower-lying regions (due to granulation, small-scale magnetic reconnection, etc.). We derive the two-dimensional Klein-Gordon equation for isothermal density perturbations in cylindrical coordinates. The equation is first solved by a standard normal mode analysis in order to obtain the free oscillation spectrum of the cavity. Then, the equation is solved in the case of impulsive forcing associated to a pressure pulse specified in the lower-lying regions. The normal mode analysis shows that the entire cylindrical cavity of granular dimensions tends to oscillate with frequencies of 5-8 mHz and also with the atmospheric cut-off frequency. Furthermore, the passage of a pressure pulse, excited in the convection zone, sets up a wake in the cavity oscillating with the same cut-off frequency. The wake oscillations can resonate with the free oscillation modes, which leads to an enhanced observed oscillation power. The resonant oscillations of these cavities explain the observed power halos near magnetic network cores and active regions.



rate research

Read More

Using the FLASH code, which solves the full set of the two-dimensional (2-D) non-ideal (resistive) time-dependent magnetohydrodynamic (MHD) equations, we study processes during the magnetic reconnection in a vertical gravitationally stratified current sheet. We show that during these processes, which correspond to processes in solar flares, plasmoids are formed due to the tearing mode instability of the current sheet. These plasmoids move upwards or downwards along the vertical current sheet, and some of them merge into larger plasmoids. We study the density and temperature structure of these plasmoids and their time evolution in details. We found that during the merging of two plasmoids the resulting larger plasmoid starts to oscillate; in our model with a $sim 25~mathrm{s}$ period. On the other hand, the plasmoid moving downwards merges with the underlying flare arcade which also starts to oscillate during this process; in our model with a $sim 35~mathrm{s}$ period. It is shown that the merging process of plasmoid with the flare arcade is a complex process as presented by complex density and temperature structures of the oscillating arcade. Moreover, all these processes are associated with magnetoacoustic waves produced by the motion and merging of plasmoids.
In recent years, coronal loops have been the focus of studies related to the damping of different magnetohydrodynamic (MHD) surface waves and their connection with coronal seismology and wave heating. For a better understanding of wave heating, we need to take into account the effects of different dissipation coefficients such as resistivity and viscosity, the importance of the loop physical characteristics, and the ways gravity can factor into the evolution of these phenomena. We aim to map the sites of energy dissipation from transverse waves in coronal loops in the presence and absence of gravitational stratification and to compare ideal, resistive, and viscous MHD. Using the PLUTO code, we performed 3D MHD simulations of kink waves in single, straight, density-enhanced coronal flux tubes of multiple temperatures. We see the creation of spatially expanded Kelvin-Helmholtz eddies along the loop, which deform the initial monolithic loop profile. For the case of driven oscillations, the Kelvin-Helmholtz instability develops despite physical dissipation, unless very high values of shear viscosity are used. Energy dissipation gets its highest values near the apex, but is present all along the loop. We observe an increased efficiency of wave heating once the kinetic energy saturates at the later stages of the simulation and a turbulent density profile has developed. The inclusion of gravity greatly alters the dynamic evolution of our systems and should not be ignored in future studies. Stronger physical dissipation leads to stronger wave heating in our set-ups. Finally, once the kinetic energy of the oscillating loop starts saturating, all the excess input energy turns into internal energy, resulting in more efficient wave heating.
We gave an extensive study for the quasi-periodic perturbations on the time profiles of the line of sight (LOS) magnetic field in 10x10 sub-areas in a solar plage region (corresponds to a facula on the photosphere). The perturbations are found to be associated with enhancement of He I 10830 A absorption in a moss region, which is connected to loops with million-degree plasma. FFT analysis to the perturbations gives a kind of spectrum similar to that of Doppler velocity: a number of discrete periods around 5 minutes. The amplitudes of the magnetic perturbations are found to be proportional to magnetic field strength over these sub-areas. In addition, magnetic perturbations lag behind a quarter of cycle in phase with respect to the p-mode Doppler velocity. We show that the relationships can be well explained with an MHD solution for the magneto-acoustic oscillations in high-b{eta} plasma. Observational analysis also shows that, for the two regions with the stronger and weaker magnetic field, the perturbations are always anti-phased. All findings show that the magnetic perturbations are actually magneto-acoustic oscillations on the solar surface, the photosphere, powered by p-mode oscillations. The findings may provide a new diagnostic tool for exploring the relationship between magneto-acoustic oscillations and the heating of solar upper atmosphere, as well as their role in helioseismology.
We report the discovery of torsional Alfvenic oscillations in solar flares, which modulate the time evolution of the magnetic free energy $E_f(t)$, while the magnetic potential energy $E_p(t)$ is uncorrelated, and the nonpotential energy varies as $E_{np}(t) = E_p + E_f(t)$. The mean observed time period of the torsional oscillations is $P_{obs}=15.1 pm 3.9$ min, the mean field line length is $L=135pm35$ Mm, and the mean phase speed is $v_{phase} =315 pm 120$ km s$^{-1}$, which we interpret as torsional Alfvenic waves in flare loops with enhanced electron densities. Most of the torsional oscillations are found to be decay-less, but exhibit a positive or negative trend in the evolution of the free energy, indicating new emerging flux (if positive), magnetic cancellation, or flare energy dissipation (if negative). The time evolution of the free energy has been calculated in this study with the {sl Vertical-Current Approximation (Version 4) Nonlinear Force-Free Field (VCA4-NLFFF)} code, which incorporates automatically detected coronal loops in the solution and bypasses the non-forcefreeness of the photospheric boundary condition, in contrast to traditional NLFFF codes.
Helioseismology is the study of the solar interior using observations of oscillations at the surface. It suffers from systematic errors, such as a center-to-limb error in travel-time measurements. Understanding these errors requires a good understanding of the nontrivial relationship between wave displacement and helioseismic observables. The wave displacement causes perturbations in the atmospheric thermodynamical quantities which perturb the opacity, the optical depth, the source function, and the local ray geometry, thus affecting the emergent intensity. We aim to establish the most complete relationship up to now between the displacement and the intensity perturbation by solving the radiative transfer problem in the atmosphere. We derive an expression for the intensity perturbation caused by acoustic oscillations at any point on the solar disk by applying the first-order perturbation theory. As input, we consider adiabatic modes of oscillation of different degrees. The background and the perturbed intensities are computed considering the main sources of opacity in the continuum. We find that, for all modes, the perturbations to the thermodynamical quantities are not sufficient to model the intensity. In addition, the geometrical effects due to the displacement must be taken into account as they lead to a difference in amplitude and a phase shift between the temperature at the surface and intensity perturbations. The closer to the limb, the larger the differences. This work presents improvements for the computation of the intensity perturbations, in particular for high-degree modes, and explains differences in intensity computations in earlier works. The phase shifts and amplitude differences between the temperature and intensity perturbations increase towards the limb. This should help to interpret some of the systematic center-to-limb effects observed in local helioseismology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا