Do you want to publish a course? Click here

Quantum Mechanical Hysteresis and the Electron Transfer Problem

104   0   0.0 ( 0 )
 Added by Pablo Etchegoin
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study a simple quantum mechanical symmetric donor-acceptor model for electron transfer (ET) with coupling to internal deformations. The model contains several basic properties found in biological ET in enzymes and photosynthetic centers; it produces tunnelling with hysteresis thus providing a simple explanation for the slowness of the reversed rate and the near 100% efficiency of ET in many biological systems. The model also provides a conceptual framework for the development of molecular electronics memory elements based on electrostatic architectures.



rate research

Read More

We present a simple interpolation formula for the rate of an electron transfer reaction as a function of the electronic coupling strength. The formula only requires the calculation of Fermi Golden Rule and Born-Oppenheimer rates and so can be combined with any methods that are able to calculate these rates. We first demonstrate the accuracy of the formula by applying it to a one dimensional scattering problem for which the exact quantum mechanical, Fermi Golden Rule, and Born-Oppenheimer rates are readily calculated. We then describe how the formula can be combined with the Wolynes theory approximation to the Golden Rule rate, and the ring polymer molecular dynamics (RPMD) approximation to the Born-Oppenheimer rate, and used to capture the effects of nuclear tunnelling, zero point energy, and solvent friction on condensed phase electron transfer reactions. Comparison with exact hierarchical equations of motion (HEOM) results for a demanding set of spin-boson models shows that the interpolation formula has an error comparable to that of RPMD rate theory in the adiabatic limit, and that of Wolynes theory in non-adiabatic limit, and is therefore as accurate as any method could possibly be that attempts to generalise these methods to arbitrary electronic coupling strengths.
152 - Eyob A. Sete , H. Eleuch 2015
We analyze an optomechanical system that can be used to efficiently transfer a quantum state between an optical cavity and a distant mechanical oscillator coupled to a second optical cavity. We show that for a moderate mechanical Q-factor it is possible to achieve a transfer efficiency of $99.4%$ by using adjustable cavity damping rates and destructive interference. We also show that the quantum mechanical oscillator can be used as a quantum memory device with an efficiency of $96%$ employing a pulsed optomechanical coupling. Although the mechanical dissipation slightly decreases the efficiency, its effect can be significantly reduced by designing a high-Q mechanical oscillator.
We study an optomechanical system in which a microwave field and an optical field are coupled to a common mechanical resonator. We explore methods that use these mechanical resonators to store quantum mechanical states and to transduce states between the electromagnetic resonators from the perspective of the effect of mechanical decoherence. Besides being of fundamental interest, this coherent quantum state transfer could have important practical implications in the field of quantum information science, as it potentially allows one to overcome intrinsic limitations of both microwave and optical platforms. We discuss several state transfer protocols and study their transfer fidelity using a fully quantum mechanical model that utilizes quantum state-diffusion techniques. This work demonstrates that mechanical decoherence should not be an insurmountable obstacle in realizing high fidelity storage and transduction.
80 - G. Lang 1999
We study nonadiabatic electron transfer within the biased spin-boson model. We calculate the incoherent transfer rate in analytic form at all temperatures for a power law form of the spectral density of the solvent coupling. In the Ohmic case, we present the exact low temperature corrections to the zero temperature rate for arbitrarily large bias energies between the two redox sites. Both for Ohmic and non-Ohmic coupling, we give the rate in the entire regime extending from zero temperature, where the rate depends significantly on the detailed spectral behaviour, via the crossover region, up to the classical regime. For low temperatures, the rate shows characteristic quantum features, in particular the shift of the rate maximum to a bias value below the reorganization energy, and the asymmetry of the rate around the maximum. We study in detail the gradual extinction of the quantum features as temperature is increased.
We show that radiation damage to unstained biological specimens is not an intractable problem in electron microscopy. When a structural hypothesis of a specimen is available, quantum mechanical principles allow us to verify the hypothesis with a very low electron dose. Realization of such a concept requires precise control of the electron wave front. Based on a diffractive electron optical implementation, we demonstrate the feasibility of this new method by both experimental and numerical investigations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا