PCA and K-Means decipher genome


Abstract in English

In this paper, we aim to give a tutorial for undergraduate students studying statistical methods and/or bioinformatics. The students will learn how data visualization can help in genomic sequence analysis. Students start with a fragment of genetic text of a bacterial genome and analyze its structure. By means of principal component analysis they ``discover that the information in the genome is encoded by non-overlapping triplets. Next, they learn how to find gene positions. This exercise on PCA and K-Means clustering enables active study of the basic bioinformatics notions. Appendix 1 contains program listings that go along with this exercise. Appendix 2 includes 2D PCA plots of triplet usage in moving frame for a series of bacterial genomes from GC-poor to GC-rich ones. Animated 3D PCA plots are attached as separate gif files. Topology (cluster structure) and geometry (mutual positions of clusters) of these plots depends clearly on GC-content.

Download