Metastable ${2S}$ muonic-hydrogen atoms undergo collisional ${2S}$-quenching, with rates which depend strongly on whether the $mu p$ kinetic energy is above or below the ${2S}to {2P}$ energy threshold. Above threshold, collisional ${2S} to {2P}$ excitation followed by fast radiative ${2P} to {1S}$ deexcitation is allowed. The corresponding short-lived $mu p ({2S})$ component was measured at 0.6 hPa $mathrm{H}_2$ room temperature gas pressure, with lifetime $tau_{2S}^mathrm{short} = 165 ^{+38}_{-29}$ ns (i.e., $lambda_{2S}^mathrm{quench} = 7.9 ^{+1.8}_{-1.6} times 10^{12} mathrm{s}^{-1}$ at liquid-hydrogen density) and population $epsilon_{2S}^mathrm{short} = 1.70^{+0.80}_{-0.56}$ % (per $mu p$ atom). In addition, a value of the $mu p$ cascade time, $T_mathrm{cas}^{mu p} = (37pm5)$ ns, was found.