Do you want to publish a course? Click here

Creating a self-induced dark spontaneous-force optical trap for neutral atoms

118   0   0.0 ( 0 )
 Added by Sergio R. Muniz
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

This communication describes the observation of a new type of dark spontaneous-force optical trap (dark SPOT) obtained without the use of a mask blocking the central part of the repumper laser beam. We observe that loading a magneto-optical trap (MOT) from a continuous and intense flux of slowed atoms and by appropriately tuning the frequency of the repumper laser is possible to achieve basically the same effect of the dark SPOT, using a simpler apparatus. This work characterizes the new system through measurements of absorption and fluorescence imaging of the atomic cloud and presents a very simple model to explain the main features of our observations. We believe that this new approach may simplify the current experiments to produce quantum degenerated gases.



rate research

Read More

141 - Pierre Lemonde 2005
We study the trap depth requirement for the realization of an optical clock using atoms confined in a lattice. We show that site-to-site tunnelling leads to a residual sensitivity to the atom dynamics hence requiring large depths (50 to $100 E_r$ for Sr) to avoid any frequency shift or line broadening of the atomic transition at the $10^{-17}-10^{-18}$ level. Such large depths and the corresponding laser power may, however, lead to difficulties (e.g. higher order light shifts, two-photon ionization, technical difficulties) and therefore one would like to operate the clock in much shallower traps. To circumvent this problem we propose the use of an accelerated lattice. Acceleration lifts the degeneracy between adjacents potential wells which strongly inhibits tunnelling. We show that using the Earths gravity, much shallower traps (down to $5 E_r$ for Sr) can be used for the same accuracy goal.
We propose a trap for cold neutral atoms using a fictitious magnetic field induced by a nanofiber-guided light field. In close analogy to magnetic side-guide wire traps realized with current-carrying wires, a trapping potential can be formed when applying a homogeneous magnetic bias field perpendicular to the fiber axis. We discuss this scheme in detail for laser-cooled cesium atoms and find trap depths and trap frequencies comparable to the two-color nanofiber-based trapping scheme but with one order of magnitude lower powers of the trapping laser field. Moreover, the proposed scheme allows one to bring the atoms closer to the nanofiber surface, thereby enabling efficient optical interfacing of the atoms with additional light fields. Specifically, optical depths per atom, $sigma_0/A_{rm eff}$, of more than 0.4 are predicted, making this system eligible for nanofiber-based nonlinear and quantum optics experiments.
Atom Trap Trace Analysis (ATTA), a novel method based upon laser trapping and cooling, is used to count individual atoms of 41Ca present in biomedical samples with isotopic abundance levels between 10^-8 and 10^-10. ATTA is calibrated against Resonance Ionization Mass Spectrometry, demonstrating a good agreement between the two methods. The present ATTA system has a counting efficiency of 2x10^-7. Within one hour of observation time, its 3-sigma detection limit on the isotopic abundance of 41Ca reaches 4.5x10^-10.
150 - Olivier Morizot 2005
We propose a new kind of toroidal trap, designed for ultracold atoms. It relies on a combination of a magnetic trap for rf-dressed atoms, which creates a bubble-like trap, and a standing wave of light. This new trap is well suited for investigating questions of low dimensionality in a ring potential. We study the trap characteristics for a set of experimentally accessible parameters. A loading procedure from a conventional magnetic trap is also proposed. The flexible nature of this new ring trap, including an adjustable radius and adjustable transverse oscillation frequencies, will allow the study of superfluidity in variable geometries and dimensionalities.
We present a magneto-optical trap (MOT) design based on millimeter ball lenses, contained within a metal cube of 0.75$^{prime prime}$ side length. We present evidence of trapping approximately $4.2times 10^5$ of $^{85}$Rb atoms with a number density of $3.2times 10^9$ atoms/cm$^{3}$ and a loading time of 1.3 s. Measurement and a kinetic laser-cooling model are used to characterize the atom trap design. The design provides several advantages over other types of MOTs: the laser power requirement is low, the small lens and cube sizes allow for miniaturization of MOT applications, and the lack of large-diameter optical beam pathways prevents external blackbody radiation from entering the trapping region.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا