Modulated Amplitude Waves and the Transition from Phase to Defect Chaos


Abstract in English

The mechanism for transitions from phase to defect chaos in the one-dimensional complex Ginzburg-Landau equation (CGLE) is presented. We introduce and describe periodic coherent structures of the CGLE, called Modulated Amplitude Waves (MAWs). MAWs of various period P occur naturally in phase chaotic states. A bifurcation study of the MAWs reveals that for sufficiently large period P, pairs of MAWs cease to exist via a saddle-node bifurcation. For periods beyond this bifurcation, incoherent near-MAW structures occur which evolve toward defects. This leads to our main result: the transition from phase to defect chaos takes place when the periods of MAWs in phase chaos are driven beyond their saddle-node bifurcation.

Download