We give a practical formula for counting irreducible nodal genus-three plane curves that a fixed generic complex structure on the normalization. As an intermediate step, we enumerate rational plane curves that have a $(3,4)$-cusp.
We express the genus-two fixed-complex-structure enumerative invariants of P^2 and P^3 in terms of the genus-zero enumerative invariants. The approach is to relate each genus-two fixed-complex-structure enumerative invariant to the corresponding symplectic invariant.
Let $C$ be a smooth, absolutely irreducible genus-$3$ curve over a number field $M$. Suppose that the Jacobian of $C$ has complex multiplication by a sextic CM-field $K$. Suppose further that $K$ contains no imaginary quadratic subfield. We give a bound on the primes $mathfrak{p}$ of $M$ such that the stable reduction of $C$ at $mathfrak{p}$ contains three irreducible components of genus $1$.
We enumerate complex curves on toric surfaces of any given degree and genus, having a single cusp and nodes as their singularities, and matching appropriately many point constraints. The solution is obtained via tropical enumerative geometry. The same technique applies to enumeration of real plane cuspidal curves: We show that, for any fixed $rge1$ and $dge2r+3$, there exists a generic real $2r$-dimensional linear family of plane curves of degree $d$ in which the number of real $r$-cuspidal curves is asymptotically comparable with the total number of complex $r$-cuspidal curves in the family, as $dtoinfty$.
We give a formula for the number of genus-two fixed-complex-structure degree-d plane curves passing through 3d-2 points in general position. This is achieved by completing Katz-Qin-Ruans approach. This papers formula agrees with the one obtained by the author in a completely different way.