Do you want to publish a course? Click here

Bounded cohomology and non-uniform perfection of mapping class groups

228   0   0.0 ( 0 )
 Added by D. Kotschick
 Publication date 2000
  fields
and research's language is English




Ask ChatGPT about the research

Using the existence of certain symplectic submanifolds in symplectic 4-manifolds, we prove an estimate from above for the number of singular fibers with separating vanishing cycles in minimal Lefschetz fibrations over surfaces of positive genus. This estimate is then used to deduce that mapping class groups are not uniformly perfect, and that the map from their second bounded cohomology to ordinary cohomology is not injective.



rate research

Read More

It is a classical result of Powell that pure mapping class groups of connected, orientable surfaces of finite type and genus at least three are perfect. In stark contrast, we construct nontrivial homomorphisms from infinite-genus mapping class groups to the integers. Moreover, we compute the first integral cohomology group associated to the pure mapping class group of any connected orientable surface of genus at least 2 in terms of the surfaces simplicial homology. In order to do this, we show that pure mapping class groups of infinite-genus surfaces split as a semi-direct product.
We study the large scale geometry of mapping class groups MCG(S), using hyperbolicity properties of curve complexes. We show that any self quasi-isometry of MCG(S) (outside a few sporadic cases) is a bounded distance away from a left-multiplication, and as a consequence obtain quasi-isometric rigidity for MCG(S), namely that groups quasi-isometric to MCG(S) are virtually equal to it. (The latter theorem was proved by Hamenstadt using different methods). As part of our approach we obtain several other structural results: a description of the tree-graded structure on the asymptotic cone of MCG(S); a characterization of the image of the curve-complex projection map from MCG(S) to the product of the curve complexes of essential subsurfaces of S; and a construction of Sigma-hulls in MCG(S), an analogue of convex hulls.
142 - Nicholas G. Vlamis 2020
We prove that the mapping class group of a surface obtained from removing a Cantor set from either the 2-sphere, the plane, or the interior of the closed 2-disk has no proper countable-index subgroups. The proof is an application of the automatic continuity of these groups, which was established by Mann. As corollaries, we see that these groups do not contain any proper finite-index subgroups and that each of these groups have trivial abelianization.
We survey recent developments on mapping class groups of surfaces of infinite topological type.
170 - Kyler Siegel 2011
We give completely combinatorial proofs of the main results of [3] using polygons. Namely, we prove that the mapping class group of a surface with boundary acts faithfully on a finitely-generated linear category. Along the way we prove some foundational results regarding the relevant objects from bordered Heegaard Floer homology,
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا