Do you want to publish a course? Click here

Tau-functions and Dressing Transformations for Zero-Curvature Affine Integrable Equations

72   0   0.0 ( 0 )
 Added by ul
 Publication date 1996
  fields Physics
and research's language is English




Ask ChatGPT about the research

The solutions of a large class of hierarchies of zero-curvature equations that includes Toda and KdV type hierarchies are investigated. All these hierarchies are constructed from affine (twisted or untwisted) Kac-Moody algebras~$ggg$. Their common feature is that they have some special ``vacuum solutions corresponding to Lax operators lying in some abelian (up to the central term) subalgebra of~$ggg$; in some interesting cases such subalgebras are of the Heisenberg type. Using the dressing transformation method, the solutions in the orbit of those vacuum solutions are constructed in a uniform way. Then, the generalized tau-functions for those hierarchies are defined as an alternative set of variables corresponding to certain matrix elements evaluated in the integrable highest-weight representations of~$ggg$. Such definition of tau-functions applies for any level of the representation, and it is independent of its realization (vertex operator or not). The particular important cases of generalized mKdV and KdV hierarchies as well as the abelian and non abelian affine Toda theories are discussed in detail.



rate research

Read More

133 - Chuu-Lian Terng 2010
We give a survey of the following six closely related topics: (i) a general method for constructing a soliton hierarchy from a splitting of a loop algebra into positive and negative subalgebras, together with a sequence of commuting positive elements, (ii) a method---based on (i)---for constructing soliton hierarchies from a symmetric space, (iii) the dressing action of the negative loop subgroup on the space of solutions of the related soliton equation, (iv) classical Backlund, Christoffel, Lie, and Ribaucour transformations for surfaces in three-space and their relation to dressing actions, (v) methods for constructing a Lax pair for the Gauss-Codazzi Equation of certain submanifolds that admit Lie transforms, (vi) how soliton theory can be used to generalize classical soliton surfaces to submanifolds of higher dimension and co-dimension.
The dressing method is a technique to construct new solutions in non-linear sigma models under the provision of a seed solution. This is analogous to the use of autoBacklund transformations for systems of the sine-Gordon type. In a recent work, this method was applied in the sigma model that describes string propagation on $mathbb{R} times mathrm{S}^2$, using as seeds the elliptic classical string solutions. Some of the new solutions that emerge reveal instabilities of their elliptic precursors. The focus of the present work is the fruitful use of the dressing method in the study of the stability of closed string solutions. It establishes an equivalence between the dressing method and the conventional linear stability analysis. More importantly, this equivalence holds true in the presence of appropriate periodicity conditions that closed strings must obey. Our investigations point to the direction of the dressing method being a general tool for the study of the stability of classical string configurations in the diverse class of symmetric spacetimes.
There is a general method for constructing a soliton hierarchy from a splitting of a loop group as a positive and a negative sub-groups together with a commuting linearly independent sequence in the positive Lie subalgebra. Many known soliton hierarchies can be constructed this way. The formal inverse scattering associates to each f in the negative subgroup a solution u_f of the hierarchy. When there is a 2 co-cycle of the Lie algebra that vanishes on both sub-algebras, Wilson constructed a tau function tau_f for each element f in the negative subgroup. In this paper, we give integral formulas for variations of ln(tau_f) and second partials of ln(tau_f), discuss whether we can recover solutions u_f from tau_f, and give a general construction of actions of the positive half of the Virasoro algebra on tau functions. We write down formulas relating tau functions and formal inverse scattering solutions and the Virasoro vector fields for the GL(n,C)-hierarchy.
194 - A. Zabrodin 2007
We consider GL(K|M)-invariant integrable supersymmetric spin chains with twisted boundary conditions and elucidate the role of Backlund transformations in solving the difference Hirota equation for eigenvalues of their transfer matrices. The nested Bethe ansatz technique is shown to be equivalent to a chain of successive Backlund transformations undressing the original problem to a trivial one.
We analyze several integrable systems in zero-curvature form within the framework of $SL(2,R)$ invariant gauge theory. In the Drienfeld-Sokolov gauge we derive a two-parameter family of nonlinear evolution equations which as special cases include the Kortweg-de Vries (KdV) and Harry Dym equations. We find residual gauge transformations which lead to infinintesimal symmetries of this family of equations. For KdV and Harry Dym equations we find an infinite hierarchy of such symmetry transformations, and we investigate their relation with local conservation laws, constants of the motion and the bi-Hamiltonian structure of the equations. Applying successive gauge transformatinos of Miura type we obtain a sequence of gauge equivalent integrable systems, among them the modified KdV and Calogero KdV equations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا