Do you want to publish a course? Click here

Chiral-Odd Structure Function h_1^D(x) and Tensor Charge of the Deuteron

54   0   0.0 ( 0 )
 Added by Alexey Yu Umnikov
 Publication date 1996
  fields
and research's language is English




Ask ChatGPT about the research

The chiral-odd structure function h_{1}^D(x) and the tensor charge of the deuteron are studied within the Bethe-Salpeter formalism for the deuteron amplitude. Utilizing a simple model for the nucleon structure function, h_1^N, h_1^D(x) is calculated and the nuclear effects are analyzed.



rate research

Read More

There are polarized structure functions $b_{1-4}$ for the spin-1 deuteron. We calculated the leading-twist tensor structure function $b_1$ by using convolution description for the deuteron. We found large differences between our theoretical functions and HERMES experimental data on $b_1$. Although higher-twist effects should be considered in obtaining experimental $b_1$, it suggests a possible existence of new hadron physics mechanism for spin-1 hadrons. Furthermore, we found that there are significant distributions at large Bjorken $x$. In future, an experimental measurement is planned at JLab for $b_1$ and there is a possibility of a proton-deuteron Drell-Yan experiment at Fermilab with the tensor-polarized deuteron, so that further theoretical studies are needed for clarifying the physics origin of tensor structure in terms of quark and gluon degrees of freedom.
Spin-1 hadrons have additional structure functions not present for spin 1/2 hadrons. These could probe novel aspects of hadron structure and QCD dynamics. For the deuteron, the tensor structure function $b_1$ inherently mixes quark and nuclear degrees of freedom. These proceedings discuss two standard convolution models applied to calculations of the deuteron $b_1$ structure functions. We find large differences with the existing HERMES data and other convolution model calculations. This leaves room for non-standard contributions to $b_1$ in the deuteron. We also discuss the influence of higher twist nuclear effects in the model calculations and data extraction at kinematics covered in HERMES and Jefferson Lab.
We solve the Wigner equation for massless spin-1/2 charged fermions near global equilibrium. The Wigner function can be obtained order by order in the power expansion of the vorticity and electromagnetic field. The Wigner function has been derived up to the second order from which the non-dissipative charge currents and the stress tensor can be obtained. The charge and energy densities and the pressure have contributions from the vorticity and electromagnetic field at the second order. The vector and axial Hall currents can be induced along the direction orthogonal to the vorticity and electromagnetic field at the second order. We also find that the trace anomaly emerges natually in renormalizing the stress tensor by including the quantum correction from the electromagnetic field.
Final results are presented from the inclusive measurement of deep-inelastic polarised-muon scattering on longitudinally polarised deuterons using a $^6$LiD target. The data were taken at $160~{rm GeV}$ beam energy and the results are shown for the kinematic range $1~({rm GeV}/c)^2 < Q^2 < 100~({rm GeV}/c)^2$ in photon virtuality, $0.004<x<0.7$ in the Bjorken scaling variable and $W > 4~{rm GeV}/c^2$ in the mass of the hadronic final state. The deuteron double-spin asymmetry $A_1^{rm d}$ and the deuteron longitudinal-spin structure function $g_1^{rm d}$ are presented in bins of $x$ and $Q^2$. Towards lowest accessible values of $x$, $g_1^{rm d}$ decreases and becomes consistent with zero within uncertainties. The presented final $g_1^{rm d}$ values together with the recently published final $g_1^{rm p}$ values of COMPASS are used to again evaluate the Bjorken sum rule and perform the QCD fit to the $g_1$ world data at next-to-leading order of the strong coupling constant. In both cases, changes in central values of the resulting numbers are well within statistical uncertainties. The flavour-singlet axial charge $a_0$, {which is identified in the $overline{rm MS}$ renormalisation scheme with the total contribution of quark helicities to the nucleon spin}, is extracted from only the COMPASS deuteron data with negligible extrapolation uncertainty: $a_0 (Q^2 = 3~({rm GeV}/c)^2) = 0.32 pm 0.02_{rm stat} pm0.04_{rm syst} pm 0.05_{rm evol}$. Together with the recent results on the proton spin structure function $g_1^{rm p}$, the results on $g_1^{rm d}$ constitute the COMPASS legacy on the measurements of $g_1$ through inclusive spin-dependent deep inelastic scattering.
We present the structure function ratios F2(Li)/F2(D) and F2(C)/F2(D) measured in deep inelastic muon-nucleus scattering at a nominal incident muon energy of 200 GeV. The kinematic range 0.0001 < x < 0.7 and 0.01< Q^2 < 70 GeV^2 is covered. For values of $x$ less than $0.002$ both ratios indicate saturation of shadowing at values compatible with photoabsorption results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا