We consider a lattice formulation of the four dimensional N=1 Wess-Zumino model that uses the Ginsparg-Wilson relation. This formulation has an exact supersymmetry on the lattice. We show that the corresponding Ward-Takahashi identity is satisfied, both at fixed lattice spacing and in the continuum limit. The calculation is performed in lattice perturbation theory up to order $g^2$ in the coupling constant. We also show that this Ward-Takahashi identity determines the finite part of the scalar and fermion renormalization wave functions which automatically leads to restoration of supersymmetry in the continuum limit. In particular, these wave functions coincide in this limit.