By cooling of equilibrium lattice fields at finite temperature in SU(2) gauge theory it has been shown that topological objects (calorons) observed on the lattice in the confined phase possess a dyonic substructure which becomes visible under certain circumstances. Here we show that, with decreasing temperature of the equilibrium ensemble, the distribution in the caloron parameter space is modified such that the calorons appear non-dissociated into constituent dyons. Still the calorons have nontrivial holonomy which is demonstrated by the Polyakov line behaviour for these configurations. At vanishing temperature (on a symmetric lattice) topological lumps obtained by cooling possess rotational symmetry in 4D and a characteristic double peak structure of Polyakov lines (defined with respect to temporal and spatial directions) with non-trivial asymptotics.