Do you want to publish a course? Click here

Fokker-Planck-Boltzmann Equation for Dissipative Particle Dynamics

90   0   0.0 ( 0 )
 Added by Colin Marsh
 Publication date 1997
  fields Physics
and research's language is English




Ask ChatGPT about the research

The algorithm for Dissipative Particle Dynamics (DPD), as modified by Espagnol and Warren, is used as a starting point for proving an H-theorem for the free energy and deriving hydrodynamic equations. Equilibrium and transport properties of the DPD fluid are explicitly calculated in terms of the system parameters for the continuous time version of the model.



rate research

Read More

By generalizing Bogolyubovs reduced description method, we suggest a formalism to derive kinetic equations for many-body dissipative systems in external stochastic field. As a starting point, we use a stochastic Liouville equation obtained from Hamiltons equations taking dissipation and stochastic perturbations into account. The Liouville equation is then averaged over realizations of the stochastic field by an extension of the Furutsu-Novikov formula to the case of a non-Gaussian field. As the result, a generalization of the classical Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy is derived. In order to get a kinetic equation for the one-particle distribution function, we use a regular cut off procedure of the BBGKY hierarchy by assuming weak interaction between the particles and weak intensity of the field. Within this approximation we get the corresponding Fokker-Planck equation for the system in a non-Gaussian stochastic field. Two particular cases by assuming either Gaussian statistics of external perturbation or homogeneity of the system are discussed.
170 - S. I. Denisov 2009
We study the connection between the parameters of the fractional Fokker-Planck equation, which is associated with the overdamped Langevin equation driven by noise with heavy-tailed increments, and the transition probability density of the noise generating process. Explicit expressions for these parameters are derived both for finite and infinite variance of the rescaled transition probability density.
134 - M. N. Najafi 2015
In this paper we statistically analyze the Fokker-Planck (FP) equation of Schramm-Loewner evolution (SLE) and its variant SLE($kappa,rho_c$). After exploring the derivation and the properties of the Langevin equation of the tip of the SLE trace, we obtain the long and short time behaviors of the chordal SLE traces. We analyze the solutions of the FP and the corresponding Langevin equations and connect it to the conformal field theory (CFT) and present some exact results. We find the perturbative FP equation of the SLE($kappa,rho_c$) traces and show that it is related to the higher order correlation functions. Using the Langevin equation we find the long-time behaviors in this case. The CFT correspondence of this case is established and some exact results are presented.
240 - S. I. Denisov 2009
We derive the generalized Fokker-Planck equation associated with the Langevin equation (in the Ito sense) for an overdamped particle in an external potential driven by multiplicative noise with an arbitrary distribution of the increments of the noise generating process. We explicitly consider this equation for various specific types of noises, including Poisson white noise and L{e}vy stable noise, and show that it reproduces all Fokker-Planck equations that are known for these noises. Exact analytical, time-dependent and stationary solutions of the generalized Fokker-Planck equation are derived and analyzed in detail for the cases of a linear, a quadratic, and a tailored potential.
177 - A.V. Plyukhin 2008
Microscopic theory of Brownian motion of a particle of mass $M$ in a bath of molecules of mass $mll M$ is considered beyond lowest order in the mass ratio $m/M$. The corresponding Langevin equation contains nonlinear corrections to the dissipative force, and the generalized Fokker-Planck equation involves derivatives of order higher than two. These equations are derived from first principles with coefficients expressed in terms of correlation functions of microscopic force on the particle. The coefficients are evaluated explicitly for a generalized Rayleigh model with a finite time of molecule-particle collisions. In the limit of a low-density bath, we recover the results obtained previously for a model with instantaneous binary collisions. In general case, the equations contain additional corrections, quadratic in bath density, originating from a finite collision time. These corrections survive to order $(m/M)^2$ and are found to make the stationary distribution non-Maxwellian. Some relevant numerical simulations are also presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا