Do you want to publish a course? Click here

Electronic structure of graphite/6H-SiC interfaces

82   0   0.0 ( 0 )
 Added by Thomas Seyller
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have studied the electronic structure of the interface between 6H-SiC{0001} and graphite. On n-type and p-type 6H-SiC(0001) we observe Schottky barriers of Phi_b,n^Si= 0.3+-0.1eV and Phi_b,p^Si=2.7+-0.1eV, respectively. The observed barrier is face specific: on n-type 6H-SiC(000-1) we find Phi_b,n^C=1.3+-0.1eV. The impact of these barriers on the electrical properties of metal/SiC contacts is discussed.



rate research

Read More

The minimization of electronics makes heat dissipation of related devices an increasing challenge. When the size of materials is smaller than the phonon mean free paths, phonons transport without internal scatterings and laws of diffusive thermal conduction fail, resulting in significant reduction in the effective thermal conductivity. This work reports, for the first time, the temperature dependent thermal conductivity of doped epitaxial 6H-SiC and monocrystalline porous 6H-SiC below room temperature probed by time-domain thermoreflectance. Strong quasi-ballistic thermal transport was observed in these samples, especially at low temperatures. Doping and structural boundaries were applied to tune the quasi-ballistic thermal transport since dopants selectively scatter high-frequency phonons while boundaries scatter phonons with long mean free paths. Exceptionally strong phonon scattering by boron dopants are observed, compared to nitrogen dopants. Furthermore, orders of magnitude reduction in the measured thermal conductivity was observed at low temperatures for the porous 6H-SiC compared to the epitaxial 6H-SiC. Finally, first principles calculations and a simple Callaway model are built to understand the measured thermal conductivities. Our work sheds light on the fundamental understanding of thermal conduction in technologically-important wide bandgap semiconductors such as 6H-SiC and will impact applications such as thermal management of 6H-SiC-related electronics and devices.
This communication presents a comparative study on the charge transport (in transient and steady state) in bulk n-type doped SiC-polytypes: 3C-SiC, 4H-SiC and 6H-SiC. The time evolution of the basic macrovariables: the electron drift velocity and the non-equilibrium temperature are obtained theoretically by using a Non-Equilibrium Quantum Kinetic Theory, derived from the method of Nonequilibrium Statistical Operator (NSO). The dependence on the intensity and orientation of the applied electric field of this macrovariables and mobility are derived and analyzed. From the results obtained in this paper, the most attractive of these semiconductors for applications requiring greater electronic mobility is the polytype 4H-SiC with the electric field applied perpendicular to the c-axis.
The thermal decomposition of SiC surface provides, perhaps, the most promising method for the epitaxial growth of graphene on a material useful in the electronics platform. Currently, efforts are focused on a reliable method for the growth of large-area, low-strain epitaxial graphene that is still lacking. We report here a novel method for the fast, single-step epitaxial growth of large-area homogeneous graphene film on the surface of SiC(0001) using an infrared CO2 laser (10.6 {mu}m) as the heating source. Apart from enabling extreme heating and cooling rates, which can control the stacking order of epitaxial graphene, this method is cost-effective in that it does not necessitate SiC pre-treatment and/or high vacuum, it operates at low temperature and proceeds in the second time scale, thus providing a green solution to EG fabrication and a means to engineering graphene patterns on SiC by focused laser beams. Uniform, low-strain graphene film is demonstrated by scanning electron microscopy and x-ray photoelectron, secondary ion mass, and Raman spectroscopies. Scalability to industrial level of the method described here appears to be realistic, in view of the high rate of CO2-laser induced graphene growth and the lack of strict sample-environment conditions.
331 - M. Sprinkle , J. Hicks , A. Tejeda 2010
We review progress in developing epitaxial graphene as a material for carbon electronics. In particular, improvements in epitaxial graphene growth, interface control and the understanding of multilayer epitaxial graphenes electronic properties are discussed. Although graphene grown on both polar faces of SiC is addressed, our discussions will focus on graphene grown on the (000-1) C-face of SiC. The unique properties of C-face multilayer epitaxial graphene have become apparent. These films behave electronically like a stack of nearly independent graphene sheets rather than a thin Bernal-stacked graphite sample. The origin of multilayer graphenes electronic behavior is its unique highly-ordered stacking of non-Bernal rotated graphene planes. While these rotations do not significantly affect the inter-layer interactions, they do break the stacking symmetry of graphite. It is this broken symmetry that causes each sheet to behave like an isolated graphene plane.
The early stages of epitaxial graphene layer growth on the Si-terminated 6H-SiC(0001) are investigated by Auger electron spectroscopy (AES) and depolarized Raman spectroscopy. The selection of the depolarized component of the scattered light results in a significant increase in the C-C bond signal over the second order SiC Raman signal, which allows to resolve submonolayer growth, including individual, localized C=C dimers in a diamond-like carbon matrix for AES C/Si ratio of $sim$3, and a strained graphene layer with delocalized electrons and Dirac single-band dispersion for AES C/Si ratio $>$6. The linear strain, measured at room temperature, is found to be compressive, which can be attributed to the large difference between the coefficients of thermal expansion of graphene and SiC. The magnitude of the compressive strain can be varied by adjusting the growth time at fixed annealing temperature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا