No Arabic abstract
Co$_2$FeSi(100) films with L2$_1$ structure deposited onto MgO(100) were studied exploiting both longitudinal (LMOKE) and quadratic (QMOKE) magneto-optical Kerr effect. The films exhibit a huge QMOKE signal with a maximum contribution of up to 30 mdeg, which is the largest QMOKE signal in reflection that has been measured thus far. This large value is a fingerprint of an exceptionally large spin-orbit coupling of second or higher order. The Co$_2$FeSi(100) films exhibit a rather large coercivity of 350 and 70 Oe for film thicknesses of 22 and 98 nm, respectively. Despite the fact that the films are epitaxial, they do not provide an angular dependence of the anisotropy and the remanence in excess of 1% and 2%, respectively.
Magnetic anisotropies and magnetization reversal properties of the epitaxial Heusler compound Co$_2$Cr$_{0.6}$Fe$_{0.4}$Al (CCFA) deposited on Fe and Cr buffer layers are studied. Both samples exhibit a growth-induced fourfold anisotropy, and magnetization reversal occurs through the formation of stripy domains or 90 degree domains. During rotational magnetometric scans the sample deposited on Cr exhibits about 2 degree sharp peaks in the angular dependence of the coercive field, which are oriented along the hard axis directions. These peaks are a consequence of the specific domain structure appearing in this particular measurement geometry. A corresponding feature in the sample deposited on Fe is not observed.
A Co$_2$FeSi (CFS) film with L2$_1$ structure was irradiated with different fluences of 30 keV Ga$^+$ ions. Structural modifications were subsequently studied using the longitudinal (LMOKE) and quadratic (QMOKE) magneto-optical Kerr effect. Both the coercivity and the LMOKE amplitude were found to show a similar behavior upon irradiation: they are nearly constant up to ion fluences of $approx6times10^{15}$ ion/cm$^2$, while they decrease with further increasing fluences and finally vanish at a fluence of $approx9times10^{16}$ ion/cm$^2$, when the sample becomes paramagnetic. However, contrary to this behavior, the QMOKE signal nearly vanishes even for the smallest applied fluence of $3times10^{14}$ ion/cm$^2$. We attribute this reduction of the QMOKE signal to an irradiation-induced degeneration of second or higher order spin-orbit coupling, which already happens at small fluences of 30 keV Ga$^+$ ions. On the other hand, the reduction of coercivity and LMOKE signal with high ion fluences is probably caused by a reduction of the exchange interaction within the film material.
We report the deposition of thin Co$_2$FeSi films by RF magnetron sputtering. Epitaxial (100)-oriented and L2$_1$ ordered growth is observed for films grown on MgO(100) substrates. (110)-oriented films on Al$_2$O$_3$(110) show several epitaxial domains in the film plane. Investigation of the magnetic properties reveals a saturation magnetization of 5.0 $mu_B/f.u.$ at low temperatures. The temperature dependence of the resistivity $rho_{xx}(T)$ exhibits a crossover from a T^3.5 law at T<50K to a T^1.65 behaviour at elevated temperatures. $rho_{xx}(H)$ shows a small anisotropic magnetoresistive effect. A weak dependence of the normal Hall effect on the external magnetic field indicates the compensation of electron and hole like contributions at the Fermi surface.
The Heusler compound Co$_2$MnSi provides a crystallographic transition from B2 to L2$_1$ structure with increasing annealing temperature $T_a$, being a model system for investigating the influence of crystallographic ordering on structural, magnetic, optic, and magnetooptic (MO) properties. Here, we present quadratic magnetooptic Kerr effect (QMOKE) spectra depending on $M^2$ in addition to the linear magnetooptic Kerr effect (LinMOKE) spectra being proportional to $M$, both in the extended visible spectral range of light from 0.8,eV to 5.5,eV. We investigated a set of Co$_2$MnSi thin films deposited on MgO(001) substrates and annealed from 300$^circ$C to 500$^circ$C. The amplitude of LinMOKE and QMOKE spectra scales linearly with $T_a$, and this effect is well pronounced at the resonant peaks below 2.0,eV of the QMOKE spectra. Furthermore, the spectra of the MO parameters, which fully describe the MO response of Co$_2$MnSi up to the second order in $M$, are obtained dependend on $T_a$. Finally, the spectra are compared to ab-initio calculations of a purely L2$_1$ ordered Co$_2$MnSi Heusler compound.
We report on optically induced, ultrafast magnetization dynamics in the Heusler alloy $mathrm{Co_{2}FeAl}$, probed by time-resolved magneto-optical Kerr effect. Experimental results are compared to results from electronic structure theory and atomistic spin-dynamics simulations. Experimentally, we find that the demagnetization time ($tau_{M}$) in films of $mathrm{Co_{2}FeAl}$ is almost independent of varying structural order, and that it is similar to that in elemental 3d ferromagnets. In contrast, the slower process of magnetization recovery, specified by $tau_{R}$, is found to occur on picosecond time scales, and is demonstrated to correlate strongly with the Gilbert damping parameter ($alpha$). Our results show that $mathrm{Co_{2}FeAl}$ is unique, in that it is the first material that clearly demonstrates the importance of the damping parameter in the remagnetization process. Based on these results we argue that for $mathrm{Co_{2}FeAl}$ the remagnetization process is dominated by magnon dynamics, something which might have general applicability.